skip to main content


Title: The genome of Anoplarchus purpurescens (Stichaeidae) reflects its carnivorous diet
Abstract

Digestion is driven by digestive enzymes and digestive enzyme gene copy number can provide insights on the genomic underpinnings of dietary specialization. The “Adaptive Modulation Hypothesis” (AMH) proposes that digestive enzyme activity, which increases with increased gene copy number, should correlate with substrate quantity in the diet. To test the AMH and reveal some of the genetics of herbivory vs carnivory, we sequenced, assembled, and annotated the genome ofAnoplarchus purpurescens, a carnivorous prickleback fish in the family Stichaeidae, and compared the gene copy number for key digestive enzymes to that ofCebidichthys violaceus, a herbivorous fish from the same family. A highly contiguous genome assembly of high quality (N50 = 10.6 Mb) was produced forA. purpurescens, using combined long-read and short-read technology, with an estimated 33,842 protein-coding genes. The digestive enzymes that we examined include pancreatic α-amylase, carboxyl ester lipase, alanyl aminopeptidase, trypsin, and chymotrypsin.Anoplarchus purpurescenshad fewer copies of pancreatic α-amylase (carbohydrate digestion) thanC. violaceus(1 vs. 3 copies). Moreover, A. purpurescenshad one fewer copy of carboxyl ester lipase (plant lipid digestion) thanC. violaceus(4 vs. 5). We observed an expansion in copy number for several protein digestion genes inA. purpurescenscompared toC. violaceus, including trypsin (5 vs. 3) and total aminopeptidases (6 vs. 5). Collectively, these genomic differences coincide with measured digestive enzyme activities (phenotypes) in the two species and they support the AMH. Moreover, this genomic resource is now available to better understand fish biology and dietary specialization.

 
more » « less
NSF-PAR ID:
10461298
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Molecular Genetics and Genomics
Volume:
298
Issue:
6
ISSN:
1617-4615
Format(s):
Medium: X Size: p. 1419-1434
Size(s):
["p. 1419-1434"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Apparent egg cannibalism was investigated in the beach‐spawning California grunionLeuresthes tenuis. Three hypotheses were tested to determine whetherL. tenuisregularly consumes and efficiently digests conspecific eggs. First, examination of the gut contents of adults collected at four spawning sites over two seasons showed that the intestines of most fish from all the sites (57–87%,n≥ 30, each site) containedL. tenuiseggs. The two other hypotheses focused on digestion of the eggs. First, the force required to crush cannibalized eggs was significantly less than that for uncannibalized eggs (fertilized or unfertilized), indicating that ingestion weakens the egg chorions. Second, conspecific eggs fed to fish held in the laboratory visibly degraded as they passed through the gut. The eggs lostc. half of their protein content and about two‐thirds of their lipid content as they passed from proximal to distal regions of the gut, indicating that digestion occurred. Digestive enzyme activities of the gut further confirmed thatL. tenuiscan break down the contents of ingested eggs. Trypsin activity decreased and aminopeptidase activity increased posteriorly along the gut, whereas amylase and lipase activities exhibited less clear patterns by gut region. As far as is known, this study is the first to show thatL. tenuisis an egg cannibal.

     
    more » « less
  2. Copy number variation may be the most common form of structural genetic variation in the genome. Numerous studies have shown that gene copy number variation can correlate with phenotypic variation, where higher copy numbers correspond to increased expression of the protein and vice versa. Examples include some digestive enzyme genes, where variation in copy numbers and protein expression may be related to dietary differences. Increasing the expression of a digestive enzyme through higher gene copy numbers may thus be a potential mechanism for altering an organism’s digestive capabilities. I investigated copy number variation in genes coding for acidic mammalian chitinase, a chitinolytic digestive enzyme that may be used for the digestion of insect exoskeletons, in nonhuman primates with varying levels of insect consumption. I hypothesized that CHIA copy number correlates positively with level of insectivory, predicting higher copy numbers in more insectivorous primates. I assessed copy number variation with the QuantStudio 3D digital PCR platform, in a comparative sample of Old World and New World primate species (N = 10 species, one or two individuals each). Contrary to my prediction, no evidence of copy number variation was found and all species tested had two gene copies per diploid genome. These findings suggest that if acidic mammalian chitinase expression varies according to insect consumption in primates, it may be up- or downregulated through another mechanism. 
    more » « less
  3. Many mammals can digest starch by using an enzyme called amylase, but different species eat different amounts of starchy foods. Amylase is released by the pancreas, and in certain species such as humans, it is also created by the glands that produce saliva, allowing the enzyme to be present in the mouth. There, amylase can start to break down starch, releasing a sweet taste that helps the animal to detect starchy foods. Curiously, humans have multiple copies of the gene that codes for the enzyme, but the exact number varies between people. Previous research has found that populations with more copies also eat more starch; if this correlation also existed in other species, it could help to understand how diets influence and shape genetic information. In addition, it is unclear how amylase came to be present in saliva, as the ancestors of mammals only produced the protein in the pancreas. Pajic et al. analyzed the genomes of a range of mammals and found that the more starch a species had in its diet, the more amylase gene copies it harbored in its genome. In fact, unrelated mammals living in different habitats and eating different types of food have similar numbers of amylase gene copies if they have the same level of starch in their diet. In addition, Pajic et al. discovered that animals such as mice, rats, pigs and dogs, which have lived in close contact with people for thousands of years, quickly adapted to the large amount of starch present in human food. In each of these species, a mechanism called gene duplication independently created new copies of the amylase gene. This could represent the first step towards some of these copies becoming active in the glands that release saliva. In people, having fewer copies of the amylase gene could mean they have a higher risk for diabetes; this number is also tied to the composition of the collection of bacteria that live in the mouth and the gut. Understanding how the copy number of the amylase gene affects biology will help to grasp how it also affects health and wellbeing, in humans and in our four-legged companions. 
    more » « less
  4. Rudi, Knut (Ed.)
    ABSTRACT Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products. 
    more » « less
  5. Abstract

    Beyond a few obvious examples (e.g., gut length, amylase activity), digestive and metabolic specializations towards diet remain elusive in fishes. Thus, we compared gut length, δ13C and δ15N signatures of the liver, and expressed genes in the intestine and liver of wild-caught individuals of four closely-related, sympatric prickleback species (family Stichaeidae) with different diets:Xiphister mucosus(herbivore), its sister taxonX. atropurpureus(omnivore),Phytichthys chirus(omnivore) and the carnivorousAnoplarchus purpurescens. We also measured the same parameters after feeding them carnivore or omnivore diets in the laboratory for 4 weeks. Growth and isotopic signatures showed assimilation of the laboratory diets, and gut length was significantly longer inX. mucosusin comparison to the other fishes, whether in the wild, or in the lab consuming the different diets. Dozens of genes relating to digestion and metabolism were observed to be under selection in the various species, butP. chirusstood out with some genes in the liver showing strong positive selection, and these genes correlating with differing isotopic incorporation of the laboratory carnivore diet in this species. Although the intestine showed variation in the expression of hundreds of genes in response to the laboratory diets, the liver exhibited species-specific gene expression patterns that changed very little (generally <40 genes changing expression, withP. chirusproviding an exception). Overall, our results suggest that the intestine is plastic in function, but the liver may be where specialization manifests since this tissue shows species-specific gene expression patterns that match with natural diet.

     
    more » « less