Forests are being converted to agriculture throughout the Afrotropics, driving declines in sensitive rainforest taxa such as understorey birds. The ongoing expansion of cocoa agriculture, a common small‐scale farming commodity, has contributed to the loss of 80% rainforest cover in some African countries. African cocoa farms may provide habitat for biodiversity, yet little is known about their suitability for vertebrate fauna, or the effect of farm management on animal communities. Here, we report the first in‐depth investigation into avian diversity and community composition in African cocoa, by assembling a dataset of 9,566 individual birds caught across 83 sites over 30 years in Southern Cameroon. We compared bird diversity in mature forest and cocoa using measures of alpha, beta and gamma diversity, and we investigated the effect of cocoa farm shade and forest cover on bird communities. Gamma diversity was higher in cocoa than forest, though alpha diversity was similar, indicating a higher dissimilarity (beta diversity) between cocoa farms. Cocoa farms differed from forest in community composition, with a distinctive decrease in relative abundance of insectivores, forest specialists and ant‐followers and an increase in frugivores. Within cocoa farms, we found that farms with high shade cover in forested landscapes resulted in higher relative abundance and richness of sensitive forest species; shady farms contained up to five times the proportion of forest specialists than sunny farms.
The outcome of the ongoing biodiversity crisis depends on the capacity of the Earth’s wildlife to persist in working landscapes. Yet, the species that occupy working landscapes are often distinct from those in protected areas, with a large group of “sensitive species” thought to rarely venture into human‐dominated landscapes. As governments have committed to restoring degraded lands world‐wide, determining whether and how working landscapes can be restored to benefit sensitive species remains a major challenge. We surveyed Neotropical birds across Northwestern Costa Rica in protected areas, farms and forests embedded within working landscapes. We analysed community composition to understand how gradients of forest cover, fragmentation and regional precipitation determine how conserving (or restoring) tropical forests in working landscapes could safeguard entire communities, especially sensitive species with limited ranges. We found agricultural sites maintained relatively high bird diversity but hosted very distinct communities from those found in protected areas. The average range size of species found in agricultural communities was double the size of species in protected areas. However, high forest cover sites in working landscapes housed bird communities with small range sizes that were equivalent to those in nearby protected areas, despite being twice as fragmented and significantly more disturbed. The effect of local forest cover on bird composition was contingent on both landscape context and regional climate. When local forest cover increased in wetter regions and more forested landscapes, bird communities in working landscapes exhibited a stronger shift towards the assemblages found in protected areas. Specifically, we found that reforesting the wettest sites would increase similarity to protected areas fourfold compared to only a twofold increase in the driest sites.
- NSF-PAR ID:
- 10461324
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Applied Ecology
- Volume:
- 56
- Issue:
- 7
- ISSN:
- 0021-8901
- Page Range / eLocation ID:
- p. 1839-1849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis and applications . Sunny African cocoa farms were less able to support sensitive bird guilds compared with shaded farms in forested landscapes. Our findings support the notion that certain ecological and dietary guilds, such as ant‐followers and forest specialists are disproportionately affected by land‐use change. In light of the current push to increase cocoa production in sub‐Saharan Africa, our results provide policymakers opportunities for more wildlife‐friendly cocoa schemes that maximize avian diversity. -
Abstract Bird conservation in agricultural settings can be controversial. While some bird species damage some crops, others suppress insect pests. Few studies have simultaneously compared bird services and disservices to assess their net impact.
Using an exclusion experiment in six California strawberry farms, we show that bird suppression of berry damage by insect pests (about 3.8% of berries) is similar in magnitude to the damage birds inflict on strawberries (about 3.2% of berries).
Across 27 farms, we found that bird species richness and the relative abundance of insectivorous birds increased, while the relative abundance of strawberry‐eating birds and bird damage decreased on farms with more semi‐natural land cover in the surrounding landscapes (1000 m radius).
Relative to homogeneous farms, those that implemented diversification practices, such as hedgerows, flower strips or increased crop diversity, had greater bird species richness, total relative abundance, insectivore abundance and strawberry‐eating bird abundance.
Synthesis and applications . Conserving semi‐natural land cover in the surrounding landscape benefits bird species richness locally and aids farmers through reduced abundance of strawberry‐eating birds and bird damage. These results highlight the need to consider both the services and disservices of birds when making management decisions. -
Abstract Large terrestrial herbivorous mammals (LTH‐mammals) influence plant community structure by affecting seedling establishment in mature tropical forests. Many of these LTH‐mammals frequent secondary forests, but their effects on seedling establishment in them are understudied, hindering our understanding of how LTH‐mammals influence forest regeneration in human‐modified landscapes.
We tested the hypothesis that the strength of LTH‐mammals' effects on seedling establishment depends on landscape protection, forest successional stage and plant species' traits using a manipulative field experiment in six 1‐ha sites with varying successional age and landscape protection. In each site, we established 40 seedling plot‐pairs, with one plot excluding LTH‐mammals and one not, and monitored seedlings of 116 woody species for 26 months.
We found significant effects of LTH‐mammal exclusion on seedling survival contingent upon the protection of forests at the landscape level and forest stage. After 26 months, survival differences between LTH‐mammal exclusion and non‐exclusion treatments were greater in protected than unprotected landscapes. Additionally, plant species' traits were related to the LTH‐mammals' differential effects, as LTH‐mammals reduced the survival of seedlings of larger‐seeded species the most. Overall, LTH‐mammals' effects translated into significant shifts in community composition as seedling communities inside and outside the exclosures diverged. Moreover, lower density and higher species diversity were found as early as 12 and 18 months outside than inside exclosures.
Synthesis and applications. Insight into the interactions between LTH‐mammals and seedling communities in forest regeneration can be instrumental in planning effective restoration efforts. We highlight the importance of landscape protection in seedling survival and the role of LTH‐mammals in promoting seedling diversity in mature forests but also in secondary successional forests. The findings suggest that conservation efforts and possibly trophic rewilding can be important approaches for preserving diversity and influencing the trajectory of secondary tropical forest succession. However, we also caution that an overabundance of LTH‐mammals may adversely impact the pace of forest succession due to their preference for large‐seeded species. Therefore, a comprehensive wildlife management plan is indispensable. Additionally, longer term studies on LTH‐mammals are necessary to understand the effects of temporal fluctuations that are undetected in short‐term studies. -
Bossart, Janice L (Ed.)
Variation in tropical forest management directly affects biodiversity and provisioning of ecosystem services on a global scale, thus it is necessary to compare forests under different conservation approaches such as protected areas, payments for ecosystem services programs (PES), and ecotourism, as well as forests lacking any formal conservation plan. To examine the effectiveness of specific conservation approaches, we examined differences in forest structure and tree recruitment, including canopy cover; canopy height; seedling, sapling, and adult tree density; and average and total diameter at breast height (DBH) across 78 plots in 18 forests across Costa Rica representing protected areas, private forests utilizing PES and/or ecotourism, and private forests not utilizing these economic incentives. The effectiveness of conservation approaches in providing suitable primate habitat was assessed by conducting broad primate census surveys across a subset of eight forests to determine species richness and group encounter rate of three primate species: mantled howler monkey (
Alouatta palliata ), Central American spider monkey (Ateles geoffroyi ), and the white-faced capuchin monkey (Cebus imitator ). Only canopy height was significantly different across the three approaches, with protected areas conserving the tallest and likely oldest forests. Canopy height was also significantly associated with the group encounter rate for both mantled howler and spider monkeys, but not for capuchins. Total group encounter rate for all three monkey species combined was higher in incentivized forests than in protected areas, with capuchin and howler monkey group encounter rates driving the trend. Group encounter rate for spider monkeys was higher in protected areas than in incentivized forests. Incentivized conservation (PES and ecotourism) and protected areas are paragons of land management practices that can lead to variation in forest structure across a landscape, which not only protect primate communities, but support the dietary ecologies of sympatric primate species. -
Summary Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue‐based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production.
We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador.
Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny.
Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.