Abstract Structural and compositional diversities of proteins generate a number of functions for fabricating novel and advanced materials. Recent progress in protein engineering endows flexible approaches and new functionalities, which makes the fabricated materials potentially applicable in a broad spectrum of fields. Such engineering strategies by applying proteins alone or together with other molecules derive numerous functional materials such as patterned nanometal materials/nanometallic compounds, well‐designed nanocomposites, etc. Advantages in materials’ tunability, property improvement (e.g., electronic and mechanical properties, etc.), functionalities, and biocompatibility have been demonstrated, thus providing alternatives to existing materials via conventional methods. This review summarizes and discusses the strategies of fabricating functional materials using proteins as the critical contributors. Benefiting from their versatility, proteins find their roles in engineering functional materials via acting as structure‐control agents, reaction agents, and battery components, which are emphasized in this review. The strategies of each group of functions are specifically detailed. Properties of protein‐engineered functional materials and their potential applications in the fields of microelectronics, energy storage and conversion, sensor devices, etc. are also reviewed.
more »
« less
Protein‐Engineered Functional Materials
Abstract Proteins are versatile macromolecules that can perform a variety of functions. In the past three decades, they have been commonly used as building blocks to generate a range of biomaterials. Owing to their flexibility, proteins can either be used alone or in combination with other functional molecules. Advances in synthetic and chemical biology have enabled new protein fusions as well as the integration of new functional groups leading to biomaterials with emergent properties. This review discusses protein‐engineered materials from the perspectives of domain‐based designs as well as physical and chemical approaches for crosslinked materials, with special emphasis on the creation of hydrogels. Engineered proteins that organize or template metal ions, bear noncanonical amino acids (NCAAs), and their potential applications, are also reviewed.
more »
« less
- Award ID(s):
- 1728858
- PAR ID:
- 10461353
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Healthcare Materials
- Volume:
- 8
- Issue:
- 11
- ISSN:
- 2192-2640
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recodedE. colistrain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis.more » « less
-
Abstract Protein‐based biomaterials have played a key role in tissue engineering, and additional exciting applications as self‐healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram‐positive bacteriumBacillus subtiliscan be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion‐catalyzed assembly (SCA). Secreted silk fibers form self‐healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials fromBacilluscells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.more » « less
-
Proteins provide essential functional regulation of many bioprocesses across all scales of life; however, new techniques to specifically modulate protein activity within living systems and in engineered biomaterials are needed to better interrogate fundamental cell signalling and guide advanced decisions of biological fate. Here we establish a generalizable strategy to rapidly and irreversibly activate protein function with full spatiotemporal control. Through the development of a genetically encoded and light-activated SpyLigation (LASL), bioactive proteins can be stably reassembled from non-functional split fragment pairs following brief exposure (typically minutes) to cytocompatible light. Employing readily accessible photolithographic processing techniques to specify when, where and how much photoligation occurs, we demonstrate precise protein activation of UnaG, NanoLuc and Cre recombinase using LASL in solution, biomaterials and living mammalian cells, as well as optical control over protein subcellular localization. Looking forward, we expect that these photoclick-based optogenetic approaches will find tremendous utility in probing and directing complex cellular fates in both time and three-dimensional space.more » « less
-
Abstract Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.more » « less
An official website of the United States government
