skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral Noble Metal Nanoparticles and Nanostructures
Abstract The origins of chirality and chiroptical properties in ligand‐protected gold and silver nanoparticles (NPs) are considered herein. Current conceptual models including the chiral core model, dissymmetric field model, and chiral footprint model are described as mechanisms that contribute to the understanding of chirality in these systems. Then, recent studies on thiolate‐stabilized gold NPs, phosphine‐stabilized gold NPs, multi‐ligand‐stabilized silver NPs, and DNA‐stabilized silver NPs are discussed. Insights into the origin of chiroptical properties including reasons for large Cotton effects in circular dichroism spectra are considered using both experimental and theoretical data available. Theoretical calculations using density functional theory (DFT) and time‐dependent DFT methods are found to be extremely useful for providing insights into the origin of chirality. The origin of chirality in ligand‐protected gold and silver NPs can be considered to be a complex phenomenon, arising from a combination of the three conceptual models.  more » « less
Award ID(s):
1726332
PAR ID:
10461404
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Particle & Particle Systems Characterization
Volume:
36
Issue:
5
ISSN:
0934-0866
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications. 
    more » « less
  2. Abstract Chiral nanoparticle (NP) superstructures, in which discrete NPs are assembled into chiral architectures, represent an exciting and growing class of nanomaterials. Their enantiospecific properties make them promising candidates for a variety of potential applications. Helical NP superstructures are a rapidly expanding subclass of chiral nanomaterials in which NPs are arranged in three dimensions about a screw axis. Their intrinsic asymmetry gives rise to a variety of interesting properties, including plasmonic chiroptical activity in the visible spectrum, and they hold immense promise as chiroptical sensors and as components of optical metamaterials. Herein, a concise history of the foundational conceptual advances that helped define the field of chiral nanomaterials is provided, and some of the major achievements in the development of helical nanomaterials are highlighted. Next, the key methodologies employed to construct these materials are discussed, and specific merits that are offered by each assembly methodology are identified, as well as their potential disadvantages. Finally, some specific examples of the emerging applications of these materials are discussed and some areas of future development and research focus are proposed. 
    more » « less
  3. Abstract Cyclopentene rings possessing a chiral quaternary center are important structural motifs found in various natural products. In this work, we disclose expedient and efficient access to this class of synthetically valuable structuresviahighly enantioselective desymmetrization of prochiral propargylic alcohols. The efficient chirality induction in this asymmetric gold catalysis is achievedviatwo‐point bindings between a gold catalyst featuring a bifunctional phosphine ligand and the substrate homopropargylic alcohol moiety—an H‐bonding interaction between the substrate HO group and a ligand phosphine oxide moiety and the gold‐alkyne complexation. The propargylic alcohol substrates can be prepared readilyviapropargylation of enoate and ketone precursors. In addition to monocyclic cyclopentenes, spirocyclic and bicyclic ones are formed with additional neighboring chiral centers of flexible stereochemistry in addition to the quaternary center. This work represents rare gold‐catalyzed highly enantioselective cycloisomerization of 1,5‐enynes. Density functional theory (DFT) calculations support the chirality induction model and suggest that the rate acceleration enabled by the bifunctional ligand can be attributed to a facilitated protodeauration step at the end of the catalysis. 
    more » « less
  4. Abstract Gold nanoparticles (NPs), and their smaller (< 2 nm) counterpart, known as gold nanoclusters (NCs), have emerged in recent years as highly efficient catalysts. They exhibit unique properties, are highly tailorable, and are highly promising for applications in nanomedicine, sensing, and bioimaging. The design of nanomaterials with optimal properties hinges on our ability to understand and control their structure-function relationship, which has remained a challenge so far. The dual organic-metallic nature of ligand-protected Au NCs complicates the experimental characterization of their structure. Density Functional Theory (DFT) calculations are highly accurate but have a high computational cost, making such calculations on large NPs and over long simulation times beyond our reach. Classical simulations allow for a thorough exploration of the configuration space but the empirical force fields they rely on often lack accuracy. In this Topical Review, we discuss recent advances enabled by Machine-Learned Potentials (MLPs), which have the ability to predict energies and atomic forces with DFT-like accuracy for a fraction of the computational cost and can be readily used in molecular simulations. We further show how MLPs have led to the elucidation of the structure, stability, thermodynamics, and reactivity of nanomaterials, thereby paving the way for the accelerated computationally-guided design of Au nanomaterials. 
    more » « less
  5. Abstract Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end‐grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface‐pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish‐kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self‐assembly modes. 
    more » « less