skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Estimating the segregation strength of microphase‐separated diblock copolymers from the interfacial width
ABSTRACT

The ever‐growing catalog of monomers being incorporated into block polymers affords exceptional control over phase behavior and nanoscale structure. The segregation strength, χN, is the fundamental link between the molecular‐level detail and the thermodynamics. However, predicting phase behavior mandates at least one experimental measurement of χNfor each pair of blocks. This typically requires access to the disordered state. We describe a method for estimating χNfrom small‐angle X‐ray scattering measurements of the interfacial width between lamellar microdomains,tx, in the microphase‐separated melt. The segregation strength is determined by comparingtxto self‐consistent field theory calculations of the intrinsic interfacial width,ti, as a function of the mean‐field χN. The method is validated using a series of independent experimental measurements oftxand χN, measured via the order–disorder transition temperature,TODT. The average absolute relative difference between χNcalculated fromtxand the value calculated fromTODTis a modest 11%. Corrections for nonplanarity of the interfaces are investigated but do not improve the agreement between the experiments and theory. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. J. Polym. Sci., Part B: Polym. Phys. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 932–940

 
more » « less
PAR ID:
10461413
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part B: Polymer Physics
Volume:
57
Issue:
14
ISSN:
0887-6266
Page Range / eLocation ID:
p. 932-940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1663–1672

     
    more » « less
  2. ABSTRACT

    The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14

     
    more » « less
  3. ABSTRACT

    Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644

     
    more » « less
  4. ABSTRACT

    The effects of incorporating metal‐binding ligands as chain extenders in polyurethane elastomers were investigated. Segmented polyurethanes based on 2 kDa poly(tetramethylene oxide) (PTMO) and 4,4‐methylenebis(cyclohexyl isocyanate) were polymerized using a two‐step process in which 2,6‐bis(1‐ethyl‐5‐(methoxymethyl)‐1H‐benzo[d]imidazol‐2‐yl)pyridine was added as a chain extender. The resulting polyurethanes were then metallated using stoichiometric amounts of Zn(II) metal salts with different counterions. The resulting metallopolymers have substantially improved Young's moduli, increased failure stress, and improved thermomechanical behavior. The materials were microphase‐separated into anisotropic hard domains within a PTMO matrix. Simultaneous small‐angle X‐ray scattering and tensile testing revealed the minority hard segment domains remain relatively intact during elongation, likely due to the strength of the metal–ligand complex. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1744–1757

     
    more » « less
  5. ABSTRACT

    Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried outviaimage analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then use this program in a case study of meniscus‐guided coating of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C8‐BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1622–1634

     
    more » « less