skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of p38 MAPK in Triacylglycerol Accumulation during Apoptosis
Abstract Lipids are emerging as key regulators of apoptosis. Specific lipid species are associated with apoptosis with important functional roles, but the understanding of the regulation of these lipid species is still limited. It has been previously shown by our laboratory that polyunsaturated triacylglycerols accumulate and get stored within lipid droplets during apoptosis via activated glycerolipid biosynthesis. In this work, the biochemical mechanisms that result in the activation of glycerolipid biosynthesis and, consequently, triacylglycerol and lipid droplet accumulation during apoptosis are investigated. The transcriptomes of control and apoptotic HCT‐116 cells are compared and gene enrichment analysis revealed the upregulation of p38 mitogen‐activated protein kinase (MAPK). It is shown that p38 MAPK regulates triacylglycerol biosynthesis through diacylglycerol acyltransferase1 during apoptosis. Perilipin 2 and cytosolic phospholipase A2delta are also shown to be involved in lipid droplet and polyunsaturated triacylglycerol accumulation in this process. Overall, the results provide new insights into the upregulation of glycerolipid synthesis during apoptosis.  more » « less
Award ID(s):
1817468
PAR ID:
10461424
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
PROTEOMICS
Volume:
19
Issue:
13
ISSN:
1615-9853
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In humans, dietary polyunsaturated fatty acids (PUFAs) are involved in therapeutic processes such as prevention and treatment of cardiovascular diseases, neuropsychiatric disorders, and dementia. We examined the physiology, PUFA accumulation and glycerol lipid biosynthesis in the marine microalga Nannochloropsis salina in response to constant suboptimal temperature (<20 °C). As expected, N. salina exhibited significantly reduced growth rate and photosynthetic activity compared to optimal cultivation temperature. Total fatty acid contents were not significantly elevated at reduced temperatures. Cultures grown at 5 °C had the highest quantity of eicosapentanoic acid (EPA) (C20:5n3) and the lowest growth rate. Additionally, we monitored broadband lipid composition to model the occurrence of metabolic alteration and remodeling for various lipid pools. We focused on triacylglycerol (TAG) with elevated PUFA content. TAGs with EPA at all three acyl positions were higher at a cultivation temperature of 15 °C. Furthermore, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, which are polar lipids associated with chloroplast membranes, decreased with reduced cultivation temperatures. Moreover, gene expression analysis of key genes involved in Kennedy pathway for de novo TAG biosynthesis revealed bimodal variations in transcript level amongst the temperature treatments. Collectively, these results show that Nannochloropsis salina is a promising source of PUFA containing lipids. 
    more » « less
  2. Abstract Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible.Physaria fendlerinaturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils. 
    more » « less
  3. Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general. 
    more » « less
  4. ABSTRACT EseN is anEdwardsiella ictaluritype III secretion system effector with phosphothreonine lyase activity. In this work, we demonstrate that EseN inactivates p38 and c-Jun-N-terminal kinase (JNK) in infected head-kidney-derived macrophages (HKDMs). We have previously reported inactivation of extracellular-regulated kinase 1/2 (ERK1/2). Also, for the first time, we demonstrated that EseN is involved in the inactivation of 3-phosphoinositide-dependent kinase 1 (PDK1), which has not been previously demonstrated for any of the EseN homologs in other species. We also found that EseN significantly affected mRNA expression ofIL-10, pro-apoptoticbaxa, andp53, but had no significant effect on anti-apoptoticbcl2or pro-apoptotic apoptotic peptidase activating factor 1. EseN is also involved in the inhibition of caspase-8 and caspase-3/7 but does not affect caspase-9 activity. Repression of apoptosis was further confirmed with flow cytometry using Alexa Fluor 647-labeled annexin V and propidium iodide. In addition, we found that theE. ictaluriT3SS is essential for the inhibition of IL-1β maturation, but EseN is not involved in this process. EseN did not affect cell pyroptosis, as indicated by the lack of EseN impact on the release of lactate dehydrogenase from infected HKDM. The transmission electron microscopy data also indicate that HKDM infected with WT or aneseNmutant died by apoptosis, while HKDM infected with the T3SS mutant more likely died by pyroptosis. Collectively, our results indicate thatE. ictaluriEseN is involved in inactivation of ERK1/2, p38, JNK, and PDK1 signaling pathways that lead to modulation of cell death among infected HKDMs. IMPORTANCEThis work has global significance in the catfish industry, which provides food for increasing global populations.E. ictaluriis a leading cause of disease loss, and EseN is an important player inE. ictalurivirulence. TheE. ictaluriT3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions ofE. ictaluriEseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions. 
    more » « less
  5. The regulation of the phosphorylation of mitogen activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation. 
    more » « less