skip to main content

Title: Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti‐6Al‐4V considering various processing and loading direction effects

Although additive manufacturing (AM) has gained significant attention due to the advantages it offers and is currently a focus of much research, design of critical load carrying components utilizing such processes is still at its infancy. This is due to the fact that most of the load carrying components made by AM processes are subjected to cyclic loads, and fatigue behaviour of AM metals is far less understood as compared with those made by conventional methods, such as wrought and cast metals. To better understand the fatigue behaviour of AM metals, a wide range of issues that affect the behaviour in a synergistic manner must be considered. These include the effects of defects, residual stresses, surface finish, geometry and size, layer orientation, and heat treatment. Additionally, due to the multiaxial nature of the loading and/or complex geometries typically manufactured by AM processes, the stress state is often multiaxial including both normal and shear stresses. In this paper, the aforementioned effects influencing the fatigue resistance of AM parts, including torsion and multiaxial fatigue behaviour, are briefly discussed using some recently generated experimental data on Ti‐6Al‐4V by the authors.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Fatigue & Fracture of Engineering Materials & Structures
Page Range / eLocation ID:
p. 991-1009
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The finishing of additive manufactured (AM) components is crucial for endowing them with fatigue resistance. Unfortunately, current AM processes naturally promote anisotropic surface characteristics that make it challenging to optimize finishing processes. In this study, bead-blasting is explored as a process for finishing Electron Beam Melted (EBM) Ti-6Al-4V. The effects of anisotropic roughness characteristics on the mechanics of bead-blasting are delineated using surface texture measurements via optical profilometry and residual stress measurements via X-ray diffraction. As-received surfaces resulting from AM, as well as those that have been Electrical Discharge Machined (EDM), are studied. It is seen that pre-processed roughness textures heavily influence the final textures and residual stresses. These linkages are quantified using a plasticity index as the governing metric—a rougher surface features a larger plastic index, which results in comparatively greater evolution of its texture characteristics than a smoother surface after equivalent bead-blasting treatments. The mechanics of this evolution are delineated using energy-controlled indentation as a model representing a single impact in bead-blasting. It is seen that rougher surfaces featuring complex textures in as-received states also produce complex stress states featuring a greater level of locally tensile stresses during indentation compared with smoother surfaces. Approaches to address these complications are proposed that can potentially transform a printed, non-functional surface into one that is optimized for fatigue resistance.

    more » « less
  2. Rollercoasters are challenging structures. Although the ever-changing geometry can guarantee a thrilling ride, the complexity of loading patterns due to the intricate geometry make testing and analysis of these structures challenging. Fatigue-induced damage is one of the most common types of damage experienced by civil engineering structures subjected to cyclic loading such as bridges and rollercoasters. Fatigue cracking eventually occurs when structures undergo a certain number of loading and unloading recurrences. This cyclic loading under stresses above a certain limit induces microcracking that can eventually propagate into failure of a member or connection. Because of the geometric and structural similarities between rollercoasters and bridge connections, similar techniques can be used for structural health monitoring and estimation of remaining fatigue life. Uniaxial fatigue analysis methods are widely used for the analysis of bridge connections. However, there is little guidance for the analysis of complex connections. They can experience variable amplitude, multiaxial, and non-proportional loading. In such cases uniaxial fatigue methods are insufficient and can lead to underestimates. A framework for the understanding and analysis of multiaxial fatigue damage using strain data collected from strain rosettes is presented. Uniaxial and multiaxial fatigue analysis methods proposed for non-proportional loading are compared. Methods proposed are applicable to both rollercoaster and bridge connections. The critical plane method is used for the estimation of multiaxial fatigue life. Results show that non-proportional loading and the accuracy of the critical plane estimation can cause a significant decrease in the estimates of remaining fatigue life. This methodology is anticipated to be used for real-time fatigue prognosis and evaluation tools for bridge networks. 
    more » « less
  3. Abstract

    Although there is a substantial growth in the Additive Manufacturing (AM) market commensurate with the demand for products produced by AM methods, there is a shortage of skilled designers in the workforce that can apply AM effectively to meet this demand. This is due to the innate complications with cost and infrastructure for high-barrier-to-entry AM processes such as powder bed fusion when attempting to educate designers about these processes through in-person learning. To meet the demands for a skilled AM workforce while also accounting for the limited access to the range of AM processes, it is important to explore other mediums of AM education such as computer-aided instruction (CAI) which can increase access to hands-on learning experiences. Therefore, the purpose of this paper is to analyze the use of CAI in AM process education and focus on its effects on knowledge gain and cognitive load. Our findings show that when designers are educated about material extrusion and powder bed fusion through CAI, the knowledge gain for powder bed fusion is significantly different than knowledge gain for material extrusion, with no significant difference in cognitive load between these two AM processes. These findings imply that there is potential in virtual mediums to improve a designer’s process-centric knowledge for the full range of AM processes including those that are usually inaccessible. We take these findings to begin developing recommendations and guidelines for the use of virtual mediums in AM education and future research that investigates implications for virtual AM education.

    more » « less
  4. The production of wind energy worldwide has increased 20-fold since 2001. Composite material wind turbine blades, typically designed for a 20-year fatigue life, are beginning to come out of service in large numbers. In general, these de-commission blades, composed primarily of glass fibers in a thermoset matrix, are demolished and landfilled. There is little motivation for recycling the composite materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not been proven to be economically viable. This research seeks to establish structural re-use applications for wind turbine blades in civil engineering infrastructure, hypothesizing that advanced composite materials may be an attractive alternative to conventional infrastructure materials (e.g. steel, reinforced concrete). This paper presents an analysis and materials characterization of a 47 meter Clipper C96 wind blade. The primarily numerical analysis is accompanied by materials characterization taken from an un-used Clipper blade donated to the project from the Wind Turbine Testing Center (WTTC). The paper presents a brief background on wind turbine blade adaptive re-use, proposing a hypothetical load bearing application of the Clipper wind blade as an electrical transmission tower structure carrying axial compression, along with flapwise and edgewise bending forces. The paper summarizes the composite laminates and cross-section geometries of the blade and establishes the axial and flexural stiffnesses of the blade at multiple sections along the blade length. From a first-order estimation of applied loads for the tower application, the resulting stresses in the composite materials are estimated and compared to the design material properties for the wind blade as originally constructed. 
    more » « less
  5. This study investigates the mechanical behavior of additively manufactured (AM) 17-4 PH (AISI 630) stainless steels and compares their behavior to traditionally produced wrought counterparts. The goal of this study is to understand the key parameters influencing AM 17-4 PH steel fatigue life under ULCF conditions and to develop simple predictive models for fatigue-life estimation in AM 17-4 steel components. In this study, both AM and traditionally produced (wrought) material samples are fatigue tested under fully reversed (R = −1) strain controlled (2–4% strain) loading and characterized using micro-hardness, x-ray diffraction, and fractography methods. Results indicate decreased fatigue life for AM specimens as compared to wrought 17-4 PH specimens due to fabrication porosity and un-melted particle defect regions which provide a mechanism for internal fracture initiation. Heat treatment processes performed in this work, to both the AM and wrought specimens, had no observable effect on ULCF behavior. Result comparisons with an existing fatigue prediction model (the Coffin–Manson universal slopes equation) demonstrated consistent over-prediction of fatigue life at applied strain amplitudes greater than 3%, likely due to inherent AM fabrication defects. An alternative empirical ULCF capacity equation is proposed herein to aid future fatigue estimations in AM 17-4 PH stainless steel components. 
    more » « less