skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Spatial dynamics within and between brain functional domains: A hierarchical approach to study time‐varying brain function
Abstract

The analysis of time‐varying activity and connectivity patterns (i.e., the chronnectome) using resting‐state magnetic resonance imaging has become an important part of ongoing neuroscience discussions. The majority of previous work has focused on variations of temporal coupling among fixed spatial nodes or transition of the dominant activity/connectivity pattern over time. Here, we introduce an approach to capture spatial dynamics within functional domains (FDs), as well as temporal dynamics within and between FDs. The approach models the brain as a hierarchical functional architecture with different levels of granularity, where lower levels have higher functional homogeneity and less dynamic behavior and higher levels have less homogeneity and more dynamic behavior. First, a high‐order spatial independent component analysis is used to approximate functional units. A functional unit is a pattern of regions with very similar functional activity over time. Next, functional units are used to construct FDs. Finally, functional modules (FMs) are calculated from FDs, providing an overall view of brain dynamics. Results highlight the spatial fluidity within FDs, including a broad spectrum of changes in regional associations, from strong coupling to complete decoupling. Moreover, FMs capture the dynamic interplay between FDs. Patients with schizophrenia show transient reductions in functional activity and state connectivity across several FDs, particularly the subcortical domain. Activity and connectivity differences convey unique information in many cases (e.g., the default mode) highlighting their complementarity information. The proposed hierarchical model to capture FD spatiotemporal variations provides new insight into the macroscale chronnectome and identifies changes hidden from existing approaches.

 
more » « less
NSF-PAR ID:
10461488
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Human Brain Mapping
Volume:
40
Issue:
6
ISSN:
1065-9471
Page Range / eLocation ID:
p. 1969-1986
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The brain is highly dynamic, reorganizing its activity at different interacting spatial and temporal scales, including variation within and between brain networks. The chronnectome is a model of the brain in which nodal activity and connectivity patterns change in fundamental and recurring ways over time. Most literature assumes fixed spatial nodes/networks, ignoring the possibility that spatial nodes/networks may vary in time. Here, we introduce an approach to calculate a spatially fluid chronnectome (called the spatial chronnectome for clarity), which focuses on the variations of networks coupling at the voxel level, and identify a novel set of spatially dynamic features. Results reveal transient spatially fluid interactions between intra‐ and internetwork relationships in which brain networks transiently merge and separate, emphasizing dynamic segregation and integration. Brain networks also exhibit distinct spatial patterns with unique temporal characteristics, potentially explaining a broad spectrum of inconsistencies in previous studies that assumed static networks. Moreover, we show anticorrelative connections to brain networks are transient as opposed to constant across the entire scan. Preliminary assessments using a multi‐site dataset reveal the ability of the approach to obtain new information and nuanced alterations that remain undetected during static analysis. Patients with schizophrenia (SZ) display transient decreases in voxel‐wise network coupling within visual and auditory networks, and higher intradomain coupling variability. In summary, the spatial chronnectome represents a new direction of research enabling the study of functional networks which are transient at the voxel level, and the identification of mechanisms for within‐ and between‐subject spatial variability.

     
    more » « less
  2. Brain large-scale dynamics is constrained by the heterogeneity of intrinsic anatomical substrate. Little is known how the spatiotemporal dynamics adapt for the heterogeneous structural connectivity (SC). Modern neuroimaging modalities make it possible to study the intrinsic brain activity at the scale of seconds to minutes. Diffusion magnetic resonance imaging (dMRI) and functional MRI reveals the large-scale SC across different brain regions. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity and exhibits complex neurobiological temporal dynamics which could not be solved by fMRI. However, most of existing multimodal analytical methods collapse the brain measurements either in space or time domain and fail to capture the spatio-temporal circuit dynamics. In this paper, we propose a novel spatio-temporal graph Transformer model to integrate the structural and functional connectivity in both spatial and temporal domain. The proposed method learns the heterogeneous node and graph representation via contrastive learning and multi-head attention based graph Transformer using multimodal brain data (i.e. fMRI, MRI, MEG and behavior performance). The proposed contrastive graph Transformer representation model incorporates the heterogeneity map constrained by T1-to-T2-weighted (T1w/T2w) to improve the model fit to structurefunction interactions. The experimental results with multimodal resting state brain measurements demonstrate the proposed method could highlight the local properties of large-scale brain spatio-temporal dynamics and capture the dependence strength between functional connectivity and behaviors. In summary, the proposed method enables the complex brain dynamics explanation for different modal variants. 
    more » « less
  3. Abstract

    How the brain's white‐matter anatomy constrains brain activity is an open question that might give insights into the mechanisms that underlie mental disorders such as schizophrenia. Chromosome 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental disorder with an extremely high risk for psychosis providing a test case to study developmental aspects of schizophrenia. In this study, we used principles from network control theory to probe the implications of aberrant structural connectivity for the brain's functional dynamics in 22q11DS. We retrieved brain states from resting‐state functional magnetic resonance images of 78 patients with 22q11DS and 85 healthy controls. Then, we compared them in terms of persistence control energy; that is, the control energy that would be required to persist in each of these states based on individual structural connectivity and a dynamic model. Persistence control energy was altered in a broad pattern of brain states including both energetically more demanding and less demanding brain states in 22q11DS. Further, we found a negative relationship between persistence control energy and resting‐state activation time, which suggests that the brain reduces energy by spending less time in energetically demanding brain states. In patients with 22q11DS, this behavior was less pronounced, suggesting a deficiency in the ability to reduce energy through brain activation. In summary, our results provide initial insights into the functional implications of altered structural connectivity in 22q11DS, which might improve our understanding of the mechanisms underlying the disease.

     
    more » « less
  4. Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.

     
    more » « less
  5. Resting-state functional magnetic resonance imaging (rsfMRI) has become a widely used approach for detecting subtle differences in functional brain fluctuations in various studies of the healthy and disordered brain. Such studies are often based on temporal functional connectivity (i.e., the correlation between time courses derived from regions or networks within the fMRI data). While being successful for a number of tasks, temporal connectivity does not fully leverage the available spatial information. In this research study, we present a new perspective on spatial functional connectivity, which involves learning patterns of spatial coupling among brain networks by utilizing recent advances in deep learning as well as the contrastive learning framework. We show that we can learn domain-specific mappings of brain networks that can, in turn, be used to characterize differences between schizophrenia patients and control. Furthermore, we show that the coupling of intradomain networks in the controls is stronger than in patients suffering from the disorder. We also evaluate the coupling among networks of different domains and find various patterns of stronger or weaker coupling among certain domains, which provide additional insights about the brain. 
    more » « less