Enhanced understanding of neuropathologies has created a need for more advanced tools. Current neural implants result in extensive glial scarring and are not able to highly localize drug delivery due to their size. Smaller implants reduce surgical trauma and improve spatial resolution, but such a reduction requires improvements in device design to enable accurate and chronic implantation in subcortical structures. Flexible needle steering techniques offer improved control over implant placement, but often require complex closed‐loop control for accurate implantation. This study reports the development of steerable microinvasive neural implants (S‐MINIs) constructed from borosilicate capillaries (OD = 60 µm, ID = 20 µm) that do not require closed‐loop guidance or guide tubes. S‐MINIs reduce glial scarring 3.5‐fold compared to prior implants. Bevel steered needles are utilized for open‐loop targeting of deep‐brain structures. This study demonstrates a sinusoidal relationship between implant bevel angle and the trajectory radius of curvature both in vitro and ex vivo. This relationship allows for bevel‐tipped capillaries to be steered to a target with an average error of 0.23 mm ± 0.19 without closed‐loop control. Polished microcapillaries present a new microinvasive tool for chronic, predictable targeting of pathophysiological structures without the need for closed‐loop feedback and complex imaging.
more » « less- PAR ID:
- 10461509
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 15
- Issue:
- 37
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Magnesium (Mg) alloys are being investigated as a biodegradable metallic biomaterial because of their mechanical property profile, which is similar to the human bone. However, implants based on Mg alloys are corroded quickly in the body before the bone fracture is fully healed. Therefore, we aimed to reduce the corrosion rate of Mg using a double protective layer. We used a magnesium-aluminum-zinc alloy (AZ91) and treated its surface with micro-arc oxidation (MAO) technique to first form an intermediate layer. Next, a bioceramic nanocomposite composed of diopside, bredigite, and fluoridated hydroxyapatite (FHA) was coated on the surface of MAO treated AZ91 using the electrophoretic deposition (EPD) technique. Our in vivo results showed a significant enhancement in the bioactivity of the nanocomposite coated AZ91 implant compared to the uncoated control implant. Implantation of the uncoated AZ91 caused a significant release of hydrogen bubbles around the implant, which was reduced when the nanocomposite coated implants were used. Using histology, this reduction in the corrosion rate of the coated implants resulted in an improved new bone formation and reduced inflammation in the interface of the implants and the surrounding tissue. Hence, our strategy using a MAO/EPD of a bioceramic nanocomposite coating (i.e., diopside-bredigite-FHA) can significantly reduce the corrosion rate and improve the bioactivity of the biodegradable AZ91 Mg implant.more » « less
-
Human movement is accomplished through muscle contraction, yet there does not exist a portable system capable of monitoring muscle length changes in real time. To address this limitation, we previously introduced magnetomicrometry, a minimally-invasive tracking technique comprising two implanted magnetic beads in muscle and a magnetic field sensor array positioned on the body’s surface adjacent the implanted beads. The implant system comprises a pair of spherical magnetic beads, each with a first coating of nickel-copper-nickel and an outer coating of Parylene C. In parallel work, we demonstrate submillimeter accuracy of magnetic bead tracking for muscle contractions in an untethered freely-roaming avian model. Here, we address the clinical viability of magnetomicrometry. Using a specialized device to insert magnetic beads into muscle in avian and lagomorph models, we collect data to assess gait metrics, bead migration, and bead biocompatibility. For these animal models, we find no gait differences post-versus pre-implantation, and bead migration towards one another within muscle does not occur for initial bead separation distances greater than 3 cm. Further, using extensive biocompatibility testing, the implants are shown to be non-irritant, non-cytotoxic, non-allergenic, and non-irritating. Our cumulative results lend support for the viability of these magnetic bead implants for implantation in human muscle. We thus anticipate their imminent use in human-machine interfaces, such as in control of prostheses and exoskeletons and in closed-loop neuroprosthetics to aid recovery from neurological disorders.more » « less
-
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.more » « less
-
Rationale Back‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern.
Methods Implanted Na (<2.0 × 1011ions/cm2, peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode.
Results Back‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself.
Conclusions Combining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times.
-
Transient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to “dissolve at will” after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies ( e.g. , electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics. We also summarize bioresorbable sensors for medical diagnoses, including representative applications in electrophysiology and neurochemical sensing. Along with the profound advancements in medical diagnosis, the commencement of therapeutic systems such as electrical stimulation and drug delivery for the biomedical or medical implant community has also been discussed. However, implementing a transient electronic system in real healthcare infrastructure is still in its infancy. Many critical challenges still need to be addressed, including strategies to decouple multimodal sensing signals, dissolution selectivity in the presence of multiple stimuli, and a complete sensing–stimulation closed-loop system. Therefore, the review discusses future opportunities in transient decoupling sensors and robust transient devices, which are selective to a particular stimulus and act as hardware-based passwords. Recent advancements in closed-loop controller-enabled electronics have also been analyzed for future opportunities of using data-driven artificial intelligence-powered controllers in fully closed-loop transient systems.more » « less