skip to main content


Title: Thermal Fluctuations Lead to Cumulative Disorder and Enhance Charge Transport in Conjugated Polymers
Abstract

All conjugated polymers examined to date exhibit significant cumulative lattice disorder, although the origin of this disorder remains unclear. Using atomistic molecular dynamics (MD) simulations, the detailed structures for single crystals of a commonly studied conjugated polymer, poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) are obtained. It is shown that thermal fluctuations of thiophene rings lead to cumulative disorder of the lattice with an effective paracrystallinity of about 0.05 in the π–π stacking direction. The thermal‐fluctuation‐induced lattice disorder can in turn limit the apparent coherence length that can be observed in diffraction experiments. Calculating mobilities from simulated crystal structures demonstrates that thermal‐fluctuation‐induced lattice disorder even enhances charge transport in P3HT. The mean inter‐chain charge transfer integral is enhanced with increasing cumulative lattice disorder, which in turn leads to pathways for fast charge transport through crystals.

 
more » « less
PAR ID:
10461513
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
40
Issue:
15
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conjugated polymers need to be doped to increase charge carrier density and reach the electrical conductivity necessary for electronic and energy applications. While doping increases carrier density, Coulomb interactions between the dopant molecules and the localized carriers are poorly screened, causing broadening and a heavy tail in the electronic density‐of‐states (DOS). The authors examine the effects of dopant‐induced disorder on two complimentary charge transport properties of semiconducting polymers, the Seebeck coefficient and electrical conductivity, and demonstrate a way to mitigate them. Their simulations, based on a modified Gaussian disorder model with Miller‐Abrahams hopping rates, show that dopant‐induced broadening of the DOS negatively impacts the Seebeck coefficient versus electrical conductivity trade‐off curve. Increasing the dielectric permittivity of the polymer mitigates dopant‐carrier Coulomb interactions and improves charge transport, evidenced by simultaneous increases in conductivity and the Seebeck coefficient. They verified this increase experimentally in iodine‐doped P3HT and P3HT blended with barium titanate (BaTiO3) nanoparticles. The addition of 2% w/w BaTiO3nanoparticles increased conductivity and Seebeck across a broad range of doping, resulting in a fourfold increase in power factor. Thus, these results show a promising path forward to reduce the dopant‐charge carrier Coulomb interactions and mitigate their adverse impact on charge transport.

     
    more » « less
  2. Abstract

    Characterizing the density of states (DOS) width accurately is critical in understanding the charge‐transport properties of organic semiconducting materials as broader DOS distributions lead to an inferior transport. From a morphological standpoint, the relative densities of ordered and disordered regions are known to affect charge‐transport properties in films; however, a comparison between molecular structures showing quantifiable ordered and disordered regions at an atomic level and its impact on DOS widths and charge‐transport properties has yet to be made. In this work, for the first time, the DOS distribution widths of two model conjugated polymer systems are characterized using three different techniques. A quantitative correlation between energetic disorder from band‐bending measurements and charge transport is established, providing direct experimental evidence that charge‐carrier mobility in disordered materials is compromised due to the relaxation of carriers into the tail states of the DOS. Distinction and quantification of ordered and disordered regions of thin films at an atomic level is achieved using solid‐state NMR spectroscopy. An ability to compare solid‐state film morphologies of organic semiconducting polymers to energetic disorder, and in turn charge transport, can provide useful guidelines for applications of organic conjugated polymers in pertinent devices.

     
    more » « less
  3. ABSTRACT

    Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 1193–1202

     
    more » « less
  4. Abstract

    Solution processing of conjugated polymers into ordered self‐assembled precursors has attracted great interest in the past years owing to the ability to manipulate their structural and physical properties. Regioregular poly(3‐hexylthiophene) (P3HT) has become the benchmark polymer in this scenario, where ordered lamellar structures significantly improve carrier mobility of the thin films due to increased crystallinity, extended intrachain conjugation, and ordered interchain π‐stacking. Here, a new photoinduced approach is presented for the generation of highly ordered P3HT aggregate structures that is amenable to the use of visible light to control the aggregate formation. Strong intra‐ and interchain interactions in the solution precursors allow for permanent formation of localized and delocalized polarons that are stable for months. Spin‐coated thin films are found to preserve, in part, the morphological and physical properties of the aggregated P3HT solution precursors with high degree of crystallinity and short π‐stack interchain distances.

     
    more » « less
  5. Abstract

    The heterogeneous microstructure of semicrystalline polymers complicates the relationship between their electrical conductivity and carrier concentration. Charge transport models typically describe conductivity with an assumption of uniform doping throughout the material. Here, the evolution in morphology and optoelectronic properties of poly(3‐hexylthiophene) (P3HT) is reported as a function of carrier concentration in an organic electrochemical transistor using a polymeric ionic liquid (PIL) as the gate insulator.Operandograzing incidence X‐ray scattering reveals that negatively charged ions from the dielectric first infiltrate the amorphous regions of the semiconductor, and then penetrate the crystalline regions at a critical carrier density of 4 × 1020cm−3. Upon infiltration, the crystallites expand by 12% in the alkyl stacking direction and compress by 4% in the π–π stacking direction. The change in crystal structure of P3HT correlates with a sharply increasing effective carrier mobility. UV–visible spectroscopy reveals that holes induced in P3HT first reside in the crystalline regions of the polymer, which verifies that a charge carrier need not be in the same physical domain as its associated counterion. The dopant‐induced morphological changes of P3HT rationalize the dependence of mobility on carrier concentration, suggesting a phase transition of crystalline regions at high carrier concentration.

     
    more » « less