skip to main content

Title: Variation in ecophysiological traits might contribute to ecogeographic isolation and divergence between parapatric ecotypes of Mimulus aurantiacus

Many forms of reproductive isolation contribute to speciation, and early‐acting barriers may be especially important, because they have the first opportunity to limit gene flow. Ecogeographic isolation occurs when intrinsic traits of taxa contribute to disjunct geographic distributions, reducing the frequency of intertaxon mating. Characterizing this form of isolation requires knowledge of both the geographic arrangement of suitable habitats in nature and the identification of phenotypes involved in shaping geographic distributions. InMimulus aurantiacus,red‐ and yellow‐flowered ecotypes are incompletely isolated by divergent selection exerted by different pollinators. However, these emerging taxa are largely isolated spatially, with a hybrid zone occurring along a narrow region of contact. In order to assess whether responses to abiotic conditions contribute to the parapatric distribution of ecotypes, we measured a series of ecophysiological traits from populations along a transect, including drought sensitivity, leaf area and the concentrations of vegetative flavonoids. In contrast to the abrupt transitions in floral phenotypes, we found that ecophysiological traits exhibited a continuous geographic transition that largely mirrors variation in climatological variables. These traits may impede gene flow across a continuous environmental gradient, but they would be unlikely to result in ecotypic divergence alone. Nevertheless, we found a genetic correlation between vegetative and floral traits, providing a potential link between the two forms of isolation. Although neither barrier appears sufficient to cause divergence on its own, the combined impacts of local adaptation to abiotic conditions and regional adaptation to pollinators may interact to drive discontinuous variation in the face of gene flow in this system.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Medium: X Size: p. 604-618
["p. 604-618"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Divergence depends on the strength of selection and frequency of gene flow between taxa, while reproductive isolation relies on mating barriers and geographic distance. Less is known about how these processes interact at early stages of speciation. Here, we compared population‐level differentiation in floral phenotype and genetic sequence variation among recently divergedCastillejato explore patterns of diversification under different scenarios of reproductive isolation.


    Using target enrichment enabled by the Angiosperms353 probe set, we assessed genetic distance among 50 populations of fourCastillejaspecies. We investigated whether patterns of genetic divergence are explained by floral trait variation or geographic distance in two focal groups: the widespreadC. sessilifloraand the more restrictedC. purpureaspecies complex.


    We document thatC. sessilifloraand theC. purpureacomplex are characterized by high diversity in floral color across varying geographic scales. Despite phenotypic divergence, groups were not well supported in phylogenetic analyses, and little genetic differentiation was found across targeted Angiosperms353 loci. Nonetheless, a principal coordinate analysis of single nucleotide polymorphisms revealed differentiation withinC. sessilifloraacross floral morphs and geography and less differentiation among species of theC. purpureacomplex.


    Patterns of genetic distance inC. sessiliflorasuggest species cohesion maintained over long distances despite variation in floral traits. In theC. purpureacomplex, divergence in floral color across narrow geographic clines may be driven by recent selection on floral color. These contrasting patterns of floral and genetic differentiation reveal that divergence can arise via multiple eco‐evolutionary paths.

    more » « less
  2. Abstract

    The distributions of many sister species in the sea overlap geographically but are partitioned along depth gradients. The genetic changes leading to depth segregation may evolve in geographic isolation as a prerequisite to coexistence or may emerge during primary divergence leading to new species. These alternatives can now be distinguished via the power endowed by the thousands of scorable loci provided by second‐generation sequence data. Here, we revisit the case of two depth‐segregated, genetically isolated ecotypes of the nominal Caribbean candelabrum coralEunicea flexuosa. Previous analyses based on a handful of markers could not distinguish between models of genetic exchange after a period of isolation (consistent with secondary contact) and divergence with gene flow (consistent with primary divergence). Analyses of the history of isolation, genetic exchange and population size based on 15,640 new SNP markers derived from RNAseq data best support models where divergence began 800K BP and include epochs of divergence with gene flow, but with an intermediate period of transient isolation. Results also supported the previous conclusion that recent exchange between the ecotypes occurs asymmetrically from the Shallow lineage to the Deep. Parallel analyses of data from two other corals with depth‐segregated populations (Agaricia fragilisandPocillopora damicornis) suggest divergence leading to depth‐segregated populations may begin with a period of symmetric exchange, but that an epoch of population isolation precedes more complete isolation marked by asymmetric introgression. Thus, while divergence‐with‐gene flow may account for much of the differentiation that separates closely related, depth‐segregated species, it remains to be seen whether any critical steps in the speciation process only occur when populations are isolated.

    more » « less
  3. Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass ( Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum , including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum , which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity. 
    more » « less
  4. Abstract

    Divergent adaptation to new ecological opportunities can be an important factor initiating speciation. However, as niches are filled during adaptive radiations, trait divergence driving reproductive isolation between sister taxa may also result in trait convergence with more distantly related taxa, increasing the potential for reticulated gene flow across the radiation. Here, we demonstrate such a scenario in a recent adaptive radiation ofRhagoletisfruit flies, specialized on different host plants. Throughout this radiation, shifts to novel hosts are associated with changes in diapause life history timing, which act as “magic traits” generating allochronic reproductive isolation and facilitating speciation‐with‐gene‐flow. Evidence from laboratory rearing experiments measuring adult emergence timing and genome‐wide DNA‐sequencing surveys supported allochronic speciation between summer‐fruitingVacciniumspp.‐infestingRhagoletis mendaxand its hypothesized and undescribed sister taxon infesting autumn‐fruiting sparkleberries. The sparkleberry fly andRmendaxwere shown to be genetically discrete sister taxa, exhibiting no detectable gene flow and allochronically isolated by a 2‐month average difference in emergence time corresponding to host availability. At sympatric sites across the southern USA, the later fruiting phenology of sparkleberries overlaps with that of flowering dogwood, the host of another more distantly related and undescribedRhagoletistaxon. Laboratory emergence data confirmed broadly overlapping life history timing and genomic evidence supported on‐going gene flow between sparkleberry and flowering dogwood flies. Thus, divergent phenological adaptation can drive the initiation of reproductive isolation, while also enhancing genetic exchange across broader adaptive radiations, potentially serving as a source of novel genotypic variation and accentuating further diversification.

    more » « less
  5. Abstract

    The reuse of old genetic variation can promote rapid diversification in evolutionary radiations, but in most cases, the historical events underlying this divergence are not known. For example, ancient hybridization can generate new combinations of alleles that sort into descendant lineages, potentially providing the raw material to initiate divergence. In the Mimulus aurantiacus species complex, there is evidence for widespread gene flow among members of this radiation. In addition, allelic variation in the MaMyb2 gene is responsible for differences in flower color between the closely related ecotypes of subspecies puniceus, contributing to reproductive isolation by pollinators. Previous work suggested that MaMyb2 was introgressed into the red-flowered ecotype of puniceus. However, additional taxa within the radiation have independently evolved red flowers from their yellow-flowered ancestors, raising the possibility that this introgression had a more ancient origin. In this study, we used repeated tests of admixture from whole-genome sequence data across this diverse radiation to demonstrate that there has been both ancient and recurrent hybridization in this group. However, most of the signal of this ancient introgression has been removed due to selection, suggesting that widespread barriers to gene flow are in place between taxa. Yet, a roughly 30 kb region that contains the MaMyb2 gene is currently shared only among the red-flowered taxa. Patterns of admixture, sequence divergence, and extended haplotype homozygosity across this region confirm a history of ancient hybridization, where functional variants have been preserved due to positive selection in red-flowered taxa but lost in their yellow-flowered counterparts. The results of this study reveal that selection against gene flow can reduce genomic signatures of ancient hybridization, but that historical introgression can provide essential genetic variation that facilitates the repeated evolution of phenotypic traits between lineages.

    more » « less