Abstract The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.
more »
« less
Marine Synechococcus isolates representing globally abundant genomic lineages demonstrate a unique evolutionary path of genome reduction without a decrease in GC content
Summary Synechococcus, a genus of unicellular cyanobacteria found throughout the global surface ocean, is a large driver of Earth's carbon cycle. Developing a better understanding of its diversity and distributions is an ongoing effort in biological oceanography. Here, we introduce 12 new draft genomes of marineSynechococcusisolates spanning five clades and utilize ~100 environmental metagenomes largely sourced from the TARA Oceans project to assess the global distributions of the genomic lineages they and other reference genomes represent. We show that five newly provided clade‐II isolates are by far the most representative of the recoveredin situpopulations (most ‘abundant’) and have biogeographic distributions distinct from previously available clade‐II references. Additionally, these isolates form a subclade possessing the smallest genomes yet identified of the genus (2.14 ± 0.05Mbps; mean ± 1SD) while concurrently hosting some of the highest GC contents (60.67 ± 0.16%). This is in direct opposition to the pattern inSynechococcus’s nearest relative,Prochlorococcus– wherein decreasing genome size has coincided with a strongdecreasein GC content – suggesting this new subclade ofSynechococcusappears to have convergently undergone genomic reduction relative to the rest of the genus, but along a fundamentally different evolutionary trajectory.
more »
« less
- PAR ID:
- 10461594
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1462-2912
- Page Range / eLocation ID:
- p. 1677-1686
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
N/A (Ed.)Abstract Medicago truncatulais a model legume that has been extensively investigated in diverse subdisciplines of plant science.Medicago littoraliscan interbreed withM. truncatulaandM. italica; these three closely related species form a clade, i.e. TLI clade. Genetic studies have indicated thatM. truncatulaaccessions are heterogeneous but their taxonomic identities have not been verified. To elucidate the phylogenetic position of diverseM. truncatulaaccessions within the genus, we assembled 54 plastid genomes (plastomes) using publicly available next-generation sequencing data and conducted phylogenetic analyses using maximum likelihood. Five accessions showed high levels of plastid DNA polymorphism. Three of these highly polymorphic accessions contained sequences from bothM. truncatulaandM. littoralis.Phylogenetic analyses of sequences placed some accessions closer to distantly related species suggesting misidentification of source material.Most accessions were placed within the TLI clade and maximally supported the interrelationships of three subclades. TwoMedicagoaccessions were placed within aM. italicasubclade of the TLI clade. Plastomes with a 45-kb (rpl20-ycf1) inversion were placed within theM. littoralissubclade. Our results suggest that theM. truncatulaaccession genome pool represents more than one species due to possible mistaken identities and gene flow among closely related species.more » « less
-
Poretsky, Rachel (Ed.)ABSTRACT Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria . Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus (“ Candidatus Halomarinus”), sister to Litoricola , comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some “ Ca. Halomarinus” organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria , has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world’s oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly “heterotrophic” taxa.more » « less
-
Summary TheSynechococcuscyanobacterial population at the Scripps Institution of Oceanography pier in La Jolla, CA, shows large increases in abundance, typically in the spring and summer followed, by rapid declines within weeks. Here we used amplicon sequencing of the ribosomal RNA internal transcribed spacer region to examine the microdiversity within this cyanobacterial genus during these blooms as well as further offshore in the Southern California coastal ecosystem (CCE). These analyses revealed numerousSynechococcusamplicon sequence variants (ASVs) and that clade and ASV composition can change over the course of blooms. We also found that a large bloom in August 2016 was highly anomalous both in its overallSynechococcusabundance and in terms of the presence of normally oligotrophicSynechococcusclade II. The dominant ASVs at the pier were found further offshore and in the California Current, but we did observe more oligotrophic ASVs and clades along with depth variation inSynechococcusdiversity. We also observed that the dominant sequence variant switched during the peak of multipleSynechococcusblooms, with this switch occurring in multiple clades, but we present initial evidence that this apparent ASV switch is a physiological response rather than a change in the dominant population.more » « less
-
Wheat, Christopher (Ed.)Abstract Paper wasps are a model system for the study of social evolution due to a high degree of inter- and intraspecific variation in cooperation, aggression, and visual signals of social status. Increasing the taxonomic coverage of genomic resources for this diverse clade will aid comparative genomic approaches for testing predictions about the molecular basis of social evolution. Here, we provide draft genome assemblies for two well-studied species of paper wasps, Polistes exclamans and Mischocyttarus mexicanus. The P. exclamans genome assembly is 221.5 Mb in length with a scaffold N50 of 4.11 Mb. The M. mexicanus genome assembly is 227 Mb in length with a scaffold N50 of 1.1 Mb. Genomes have low repeat content (9.54–10.75%) and low GC content (32.06–32.4%), typical of other social hymenopteran genomes. The DNA methyltransferase gene, Dnmt3 , was lost early in the evolution of Polistinae. We identified a second independent loss of Dnmt3 within hornets (genus: Vespa).more » « less