Microorganism sensing of and responding to ambient chemical gradients regulates a myriad of microbial processes that are fundamental to ecosystem function and human health and disease. The development of efficient, high-throughput screening tools for microbial chemotaxis is essential to disentangling the roles of diverse chemical compounds and concentrations that control cell nutrient uptake, chemorepulsion from toxins, and microbial pathogenesis. Here, we present a novel microfluidic multiplexed chemotaxis device (MCD) which uses serial dilution to simultaneously perform six parallel bacterial chemotaxis assays that span five orders of magnitude in chemostimulant concentration on a single chip. We first validated the dilution and gradient generation performance of the MCD, and then compared the measured chemotactic response of an established bacterial chemotaxis system (Vibrio alginolyticus) to a standard microfluidic assay. Next, the MCD’s versatility was assessed by quantifying the chemotactic responses of different bacteria (Psuedoalteromonas haloplanktis, Escherichia coli) to different chemoattractants and chemorepellents. The MCD vastly accelerates the chemotactic screening process, which is critical to deciphering the complex sea of chemical stimuli underlying microbial responses.
more »
« less
Chemotaxis in shear flow: Similarity solutions of the steady‐state chemoattractant and bacterial distributions
Abstract When chemotactic bacteria are exposed to a concentration gradient of chemoattractant while flowing along a channel, the bacteria accumulate at the interface between the chemoattractant source and bacterial suspension. Assuming that the interface is no‐slip, we can apply the shear flow approximation near the no‐slip boundary and solve a steady‐state convection‐diffusion model for both chemoattractant and bacterial concentrations. We suggest similarity solutions for the two‐dimensional problem and identify a critical length scaleηcfor bacteria chemotaxis in a given concentration gradient. The analysis identifies three dimensionless groups representing, respectively, chemotactic sensitivity, the chemotaxis receptor constant, and the bacteria diffusion coefficient, which typically show coupled effects in experimental systems. We study the effect of the dimensionless groups separately and provide understanding of the system involving shear flow and chemotaxis.
more »
« less
- Award ID(s):
- 1702693
- PAR ID:
- 10461623
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AIChE Journal
- Volume:
- 65
- Issue:
- 10
- ISSN:
- 0001-1541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data-driven discovery of chemotactic migration of bacteria via coordinate-invariant machine learningAbstract BackgroundE. colichemotactic motion in the presence of a chemonutrient field can be studied using wet laboratory experiments or macroscale-level partial differential equations (PDEs) (among others). Bridging experimental measurements and chemotactic Partial Differential Equations requires knowledge of the evolution of all underlying fields, initial and boundary conditions, and often necessitates strong assumptions. In this work, we propose machine learning approaches, along with ideas from the Whitney and Takens embedding theorems, to circumvent these challenges. ResultsMachine learning approaches for identifying underlying PDEs were (a) validated through the use of simulation data from established continuum models and (b) used to infer chemotactic PDEs from experimental data. Such data-driven models were surrogates either for the entire chemotactic PDE right-hand-side (black box models), or, in a more targeted fashion, just for the chemotactic term (gray box models). Furthermore, it was demonstrated that a short history of bacterial density may compensate for the missing measurements of the field of chemonutrient concentration. In fact, given reasonable conditions, such a short history of bacterial density measurements could even be used toinferchemonutrient concentration. ConclusionData-driven PDEs are an important modeling tool when studying Chemotaxis at the macroscale, as they can learn bacterial motility from various data sources, fidelities (here, computational models, experiments) or coordinate systems. The resulting data-driven PDEs can then be simulated to reproduce/predict computational or experimental bacterial density profile data independent of the coordinate system, approximate meaningful parameters or functional terms, and even possibly estimate the underlying (unmeasured) chemonutrient field evolution.more » « less
-
In this paper, we consider a coupled chemotaxis-fluid system that models self-organized collective behavior of oxytactic bacteria in a sessile drop. This model describes the biological chemotaxis phenomenon in the fluid environment and couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force, which is proportional to the relative surplus of the cell density compared to the water density. We develop a new positivity preserving and high-resolution method for the studied chemotaxis-fluid system. Our method is based on the diffuse-domain approach, which we use to derive a new chemotaxis-fluid diffuse-domain (cf-DD) model for simulating bioconvection in complex geometries. The drop domain is imbedded into a larger rectangular domain, and the original boundary is replaced by a diffuse interface with finite thickness. The original chemotaxis-fluid system is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the physical interface. We show that the cf-DD model converges to the chemotaxis-fluid model asymptotically as the width of the diffuse interface shrinks to zero. We numerically solve the resulting cf-DD system by a second-order hybrid finite-volume finite-difference method and demonstrate the performance of the proposed approach on a number of numerical experiments that showcase several interesting chemotactic phenomena in sessile drops of different shapes, where the bacterial patterns depend on the droplet geometries.more » « less
-
Lee, Sang Yup (Ed.)ABSTRACT Quorum sensing (QS) enables coordinated, population-wide behavior. QS-active bacteria “communicate” their number density using autoinducers which they synthesize, collect, and interpret. Tangentially, chemotactic bacteria migrate, seeking out nutrients and other molecules. It has long been hypothesized that bacterial behaviors, such as chemotaxis, were the primordial progenitors of complex behaviors of higher-order organisms. Recently, QS was linked to chemotaxis, yet the notion that these behaviors can together contribute to higher-order behaviors has not been shown. Here, we mathematically link flocking behavior, commonly observed in fish and birds, to bacterial chemotaxis and QS by constructing a phenomenological model of population-scale QS-mediated phenomena. Specifically, we recast a previously developed mathematical model of flocking and found that simulated bacterial behaviors aligned well with well-known QS behaviors. This relatively simple system of ordinary differential equations affords analytical analysis of asymptotic behavior and describes cell position and velocity, QS-mediated protein expression, and the surrounding concentrations of an autoinducer. Further, heuristic explorations of the model revealed that the emergence of “migratory” subpopulations occurs only when chemotaxis is directly linked to QS. That is, behaviors were simulated when chemotaxis was coupled to QS and when not. When coupled, the bacterial flocking model predicts the formation of two distinct groups of cells migrating at different speeds in their journey toward an attractant. This is qualitatively similar to phenomena spotted in our Escherichia coli chemotaxis experiments as well as in analogous work observed over 50 years ago. IMPORTANCE Our modeling efforts show how cell density can affect chemotaxis; they help to explain the roots of subgroup formation in bacterial populations. Our work also reinforces the notion that bacterial mechanisms are at times exhibited in higher-order organisms.more » « less
-
ABSTRACT Most chemotactic motile bacteria possess multiple chemotaxis signaling systems, the functions of which are not well characterized. Chemotaxis signaling is initiated by chemoreceptors that assemble as large arrays, together with chemotaxis coupling proteins (CheW) and histidine kinase proteins (CheA), which form a baseplate with the cytoplasmic tips of receptors. These cell pole-localized arrays mediate sensing, signaling, and signal amplification during chemotaxis responses. Membrane-bound chemoreceptors with different cytoplasmic domain lengths segregate into distinct arrays. Here, we show that a bacterium, Azospirillum brasilense , which utilizes two chemotaxis signaling systems controlling distinct motility parameters, coordinates its chemotactic responses through the production of two separate membrane-bound chemoreceptor arrays by mixing paralogs within chemotaxis baseplates. The polar localization of chemoreceptors of different length classes is maintained in strains that had baseplate signaling proteins from either chemotaxis system but was lost when both systems were deleted. Chemotaxis proteins (CheA and CheW) from each of the chemotaxis signaling systems (Che1 and Che4) could physically interact with one another, and chemoreceptors from both classes present in A. brasilense could interact with Che1 and Che4 proteins. The assembly of paralogs from distinct chemotaxis pathways into baseplates provides a straightforward mechanism for coordinating signaling from distinct pathways, which we predict is not unique to this system given the propensity of chemotaxis systems for horizontal gene transfer. IMPORTANCE The assembly of chemotaxis receptors and signaling proteins into polar arrays is universal in motile chemotactic bacteria. Comparative genome analyses indicate that most motile bacteria possess multiple chemotaxis signaling systems, and experimental evidence suggests that signaling from distinct chemotaxis systems is integrated. Here, we identify one such mechanism. We show that paralogs from two chemotaxis systems assemble together into chemoreceptor arrays, forming baseplates comprised of proteins from both chemotaxis systems. These mixed arrays provide a straightforward mechanism for signal integration and coordinated response output from distinct chemotaxis systems. Given that most chemotactic bacteria encode multiple chemotaxis systems and the propensity for these systems to be laterally transferred, this mechanism may be common to ensure chemotaxis signal integration occurs.more » « less
An official website of the United States government
