skip to main content


Title: The environmental and genetic determinants of chick telomere length in Tree Swallows ( Tachycineta bicolor )
Abstract

Conditions during early life can have dramatic effects on adult characteristics and fitness. However, we still know little about the mechanisms that mediate these relationships. Telomere shortening is one possibility. Telomeres are long sequences of DNA that protect the ends of chromosomes. They shorten naturally throughout an individual's life, and individuals with short telomeres tend to have poorer health and reduced survival. Given this connection between telomere length (TL) and fitness, natural selection should favor individuals that are able to retain longer telomeres for a greater portion of their lives. However, the ability of natural selection to act on TL depends on the extent to which genetic and environmental factors influence TL. In this study, we experimentally enlarged broods of Tree Swallows (Tachycineta bicolor) to test the effects of demanding early‐life conditions on TL, while simultaneously cross‐fostering chicks to estimate heritable genetic influences on TL. In addition, we estimated the effects of parental age and chick sex on chick TL. We found that TL is highly heritable in Tree Swallow chicks, and that the maternal genetic basis for TL is stronger than is the paternal genetic basis. In contrast, the experimental manipulation of brood size had only a weak effect on chick TL, suggesting that the role of environmental factors in influencing TL early in life is limited. There was no effect of chick sex or parental age on chick TL. While these results are consistent with those reported in some studies, they are in conflict with others. These disparate conclusions might be attributable to the inherent complexity of telomere dynamics playing out differently in different populations or to study‐specific variation in the age at which subjects were measured.

 
more » « less
NSF-PAR ID:
10461626
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
14
ISSN:
2045-7758
Page Range / eLocation ID:
p. 8175-8186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Parental age can affect offspring telomere length through heritable and epigenetic-like effects, but at what stage during development these effects are established is not well known. To address this, we conducted a cross-fostering experiment in common gulls (Larus canus) that enabled us distinguish between pre-and post-natal parental age effects on offspring telomere length. Whole clutches were exchanged after clutch completion within and between parental age classes (young and old) and blood samples were collected from chicks at hatching and during the fastest growth phase (11 days later) to measure telomeres. Neither the ages of the natal nor the foster parents predicted the telomere length or the change in telomere lengths of their chicks. Telomere length (TL) was repeatable within chicks, but increased across development (repeatability = 0.55, intraclass correlation coefficient within sampling events 0.934). Telomere length and the change in telomere length were not predicted by post-natal growth rate. Taken together, these findings suggest that in common gulls, telomere length during early life is not influenced by parental age or growth rate, which may indicate that protective mechanisms buffer telomeres from external conditions during development in this relatively long-lived species. 
    more » « less
  2. Abstract Objectives

    Telomeres, emerging biomarkers of aging, are comprised of DNA repeats located at chromosomal ends that shorten with cellular replication and age in most human tissues. In contrast, spermatocyte telomeres lengthen with age. These changes in telomere length (TL) appear to be heritable, as older paternal ages of conception (PAC) predict longer offspring TL. Mouse‐model studies raise questions about the potential for effects of paternal experiences on human offspring TL, as they suggest that smoking, inflammation, DNA damage, and stressors all shorten sperm TL. Here, we examined whether factors from the paternal environment predict offspring TL as well as interact with PAC to predict offspring TL.

    Materials and Methods

    Using data from the Philippines, we tested if smoking, psychosocial stressors, or shorter knee height (a measure of early life adversity) predict shorter offspring TL. We also tested if these interacted with PAC in predicting offspring TL.

    Results

    While we did not find the predicted associations, we observed a trend toward fathers with shorter knee height having offspring with longer TL. In addition, we found that knee height interacted with PAC to predict offspring TL. Specifically, fathers with shorter knee heights showed a stronger positive effect of PAC on offspring TL.

    Discussion

    While the reasons for these associations remain uncertain, shorter knee height is characteristic of earlier puberty. Since spermatocyte TL increases with the production of sperm, we speculate that individuals with earlier puberty, and its concomitant commencement of production of sperm, had more time to accumulate longer sperm telomeres.

     
    more » « less
  3. Abstract

    Telomeres, protective caps at the end of chromosomes, are often positively related to lifespan and are thought to be an important mechanism of organismal aging. To better understand the casual relationships between telomere length and longevity, it is essential to be able to experimentally manipulate telomere dynamics (length and loss rate). Previous studies suggest that exposure to TA‐65, an extract from the Chinese rootAstragalus membranaceus, activates telomerase, lengthens telomeres, increases the growth of keratin‐based structures, and boosts the immune system in adults. However, telomere loss is expected to be greatest during early life but whether TA‐65 has similar effects during this life stage is currently unknown. Here, we experimentally exposed free‐living house sparrow (Passer domesticus) chicks to TA‐65 during post‐natal development and examined the effects on telomere length and loss, growth of keratin‐based structures, and a measure of cellular immunity. Contrary to expectation, the growth of keratin‐based structures was reduced in TA‐65 chicks and in the second year of the study, chicks exposed to TA‐65 experienced more telomere loss than controls. Thus, the effects of TA‐65 on telomeres and keratin‐based structures differ across life stages and future research will be necessary to determine the mechanisms underlying these age‐specific effects.

     
    more » « less
  4. Abstract

    A plethora of intrinsic and environmental factors have been shown to influence the length of telomeres, the protector of chromosome ends. Despite the growing interest in infection–telomere interactions, there is very limited knowledge on how transmissible cancers influence telomere maintenance. An emblematic example of transmissible cancer occurs in the Tasmanian devil (Sarcophilus harrisii), whose populations have been dramatically reduced by infectious cancer cells. To investigate associations between telomere dynamics and the transmissible cancer, we used longitudinal data from a Tasmanian devil population that has been exposed to the disease for over 15 years. We detected substantial temporal variation in individual telomere length (TL), and a positive significant association between TL and age, as well as a marginally significant trend for devils with devil facial tumour disease (DFTD) having longer telomeres. A proportional hazard analysis yielded no significant effect of TL on the development of DFTD. Like previous studies, we show the complexity that TL dynamics may exhibit across the lifetime of organisms. Our work highlights the importance of long‐term longitudinal sampling for understanding the effects of wildlife diseases on TL.

     
    more » « less
  5. Abstract

    Telomeres are emerging as correlates of fitness‐related traits and may be important mediators of ecologically relevant variation in life history strategies. Growing evidence suggests that telomere dynamics can be more predictive of performance than length itself, but very little work considers how telomere regulatory mechanisms respond to environmental challenges or influence performance in nature. Here, we combine observational and experimental data sets from free‐living tree swallows (Tachycineta bicolor) to assess how performance is predicted by the telomere regulatory gene POT1, which encodes a shelterin protein that sterically blocks telomerase from repairing the telomere. First, we show that lower POT1 gene expression in the blood was associated with higher female quality, that is, earlier breeding and heavier body mass. We next challenged mothers with an immune stressor (lipopolysaccharide injection) that led to “sickness” in mothers and 24 h of food restriction in their offspring. While POT1 did not respond to maternal injection, females with lower constitutive POT1 gene expression were better able to maintain feeding rates following treatment. Maternal injection also generated a 1‐day stressor for chicks, which responded with lower POT1 gene expression and elongated telomeres. Other putatively stress‐responsive mechanisms (i.e., glucocorticoids, antioxidants) showed marginal responses in stress‐exposed chicks. Model comparisons indicated that POT1 mRNA abundance was a largely better predictor of performance than telomere dynamics, indicating that telomere regulators may be powerful modulators of variation in life history strategies.

     
    more » « less