skip to main content


Title: Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America
Abstract

Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet.

We compared the spring migration strategies of Fork‐tailed Flycatchers (Tyrannus s. savana) that breed at south‐temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intratropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time‐selected than intratropical migrants during spring migration. As such, we predicted that austral migrants, which migrate further than intratropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration.

We attached light‐level geolocators to Fork‐tailed Flycatchers at two tropical breeding sites in Brazil and at two south‐temperate breeding sites in Argentina and tracked their movements until the following breeding season.

Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date.

This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork‐tailed Flycatchers in South America are not more time‐selected on spring migration than intratropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.

 
more » « less
NSF-PAR ID:
10461632
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
10
ISSN:
2045-7758
Page Range / eLocation ID:
p. 5752-5765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Neotropical countries receive financing and effort from temperate nations to aid the conservation of migratory species that move between temperate and tropical regions. If allocated strategically, these resources could simultaneously contribute to other conservation initiatives. In this study, we use novel distribution maps to show how those resources could aid planning for the recovery of threatened resident vertebrates.

    Using eBird‐based relative abundance estimates, we first identified areas with high richness of Neotropical migrant landbirds of conservation concern (23 species) during the stationary non‐breeding period. Within these areas, we then identified threatened species richness, projected forest loss and conducted a prioritization for 1,261 red‐listed vertebrates using Terrestrial Area‐of‐Habitat maps.

    Richness for migrants was greatest along a corridor from the Yucatan peninsula south to the northern Andes but also included south‐west Mexico and Hispaniola. Protected areas account for 22% of this region while 21% is at risk of forest loss. Within this focal region for migrants, all four vertebrate groups showed hotspots of threatened species richness along the west and east Andean slopes. Taxa‐specific hotspots included montane areas of southern Mexico and central Guatemala (amphibians/reptiles) and the entire east slope of the Colombian East Andes (mammals).

    Our prioritization highlighted several areas of importance for conservation due to high threatened species richness and projected forest loss including (a) the Pacific dry forests of south‐west Mexico, (b) montane regions of northern Central America and (c) the west Andean slope of Colombia and Ecuador. At a landscape scale in southern Colombia, we show how conservation efforts for six Neotropical migrants could benefit 56 threatened residents that share a similar elevational range.

    Synthesis and applications. Funding and effort for migratory bird conservation also has potential to benefit threatened resident vertebrates in the Neotropics. Our study highlights how novel, high‐resolution information on species distributions and risk of forest loss can be integrated to identify priority areas for the two groups at regional and landscape scales. The approach and data can be further modified for more specific goals, such as within‐country initiatives.

     
    more » « less
  2. Abstract

    Divergent migratory strategies among populations can result in population‐level differences in timing of reproduction (allochrony) and local adaptation. However, the mechanisms underlying among‐population variation in timing are insufficiently understood, particularly in females.

    We studied differences in reproductive development and its related mechanisms along the hypothalamic–pituitary–gonadal axis (HPG) in closely related migratory and sedentary (i.e. resident) female dark‐eyed juncos (Junco hyemalis) living together in sympatry during early spring. Despite exposure to the same environmental cues in early spring, residents initiate breeding prior to the departure of migrants for their breeding grounds. We investigated whether residents would be more reproductively developed than migrants based on their behavioural differences. Alternatively, females could exhibit similar reproductive development in response to the same environmental cues despite differences in migratory behaviour. To compare their degree of reproductive development during seasonal sympatry and the underlying mechanisms of these differences, we collected ovarian and liver tissue in early spring prior to migration and compared transcript abundance of genes associated with reproduction using quantitative PCR. We also used stable hydrogen isotopes to infer relative breeding and wintering latitude of migrants.

    We found higher transcript abundance of luteinizing hormone receptor and aromatase in the ovary in addition to significantly heavier ovaries in residents than in migrants. Together, these results suggest greater sensitivity and response to upstream endocrine stimulation in resident females. Transcript abundance for other receptors in the ovary and liver associated with reproduction, however, did not differ between populations. When comparing ovarian development within migrants, females with lower hydrogen isotopes (indicating higher breeding latitudes) had smaller ovaries, suggesting that longer‐distance migrations may further delay reproductive development.

    Based on differences in ovary mass and transcript abundance, we conclude that females that differ in migratory strategy also differ in timing of reproductive development. These results support that divergent migratory behaviour drives allochrony and could enable reproductive isolation between populations; mechanistic differences at the level of gonadal stimulation can explain these differences in timing of reproductive development.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    Given increasing evidence that climate change affects the annual cycles of birds, it is important to understand the mechanisms underlying individual migration strategies and population-level patterns in partial migrants. In this study, we found that thermoregulation (body size and winter temperatures) was a key driver of American Kestrel (Falco sparverius) migration decisions. The annual proportion of migrants in the population, however, was not explained by winter weather and may be the result of differential survival. We measured stable hydrogen isotope values (δD) of talon tissues collected from 501 breeding and overwintering birds to distinguish migrant from resident kestrels in a partially migratory population of American Kestrels in southwestern Idaho in 2013–2021. We then evaluated drivers of migration decisions by assessing potential correlates of migration strategies, whether individuals switched migration strategies between years, and whether the proportion of migrants in the population changed over time or was correlated with winter weather. Male kestrels were 1.6 times more likely to migrate than females, and in colder than average winters, smaller birds of both sexes were more likely to migrate than larger birds. Only 27% of 26 recaptured individuals showed evidence of switching their migration strategies on an annual basis. There was no temporal trend in the proportion of migrants in the population, but proportions varied between years. Interestingly, there was no association between winter minimum temperature anomalies and annual migrant proportions in the population, suggesting that differential over-winter survival, or other stochastic processes, may play an important role in population composition. As winters continue to warm, fewer kestrels may migrate and more may remain resident on breeding grounds. However, it is unclear how changes in migration strategies might affect population-level patterns and resilience to climate change.

     
    more » « less
  4. Migratory bird populations frequently consist of individuals that overwinter variable distances from the breeding site. Seasonal changes in photoperiod, which varies with latitude, underlie seasonal changes in singing frequency in birds. Therefore, migratory populations that consist of individuals that overwinter at different latitudes with large overwintering ranges could experience within-population variation in seasonal production of song. To test the influence of overwintering latitude on intrapopulation variance in song production in the spring, we subjected two groups of Eastern Song Sparrows (Melospiza melodia melodia) from the same partially migratory breeding population to different photoperiodic schedules associated with a 1,300-km difference in overwintering location. One group remained on the natural photoperiodic schedule of the breeding site (resident group) while the other group experienced a nonbreeding photoperiod that mimicked a southern migration in the fall followed by a northern migration back to the breeding site in the spring (migratory group). We compared song output between the two groups in three different stages (nonbreeding, prebreeding, and breeding). Little singing occurred during nonbreeding stage sample dates (20 November, 6 December) for the resident group, and no singing occurred for the migrant group. During the prebreeding stage (27 January, 7 February), significantly more singing occurred in the resident group than in the migrant group. During the breeding stage (21 March, 4 April), after a simulated migration for the migrants, song output was similar in both groups. These results suggest that within-population variation in wintering latitude may contribute to variation in seasonal changes in singing behavior, which may covary with readiness to breed. Studies utilizing confirmed migrants and residents, rather than merely simulated migrants and residents, are also needed to better understand these processes. 
    more » « less
  5. Abstract

    Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade−1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.

     
    more » « less