skip to main content


Title: Broader niches revealed by fossil data do not reduce estimates of range loss and fragmentation of African montane trees
Aim

The climate tolerances of many species are broader than those estimated from current native ranges. Indeed, the niches of some Afromontane trees are up to 50% larger after incorporation of fossil data. This expansion could reduce estimates of species' future range loss owing to climate change but also implies strong non‐climatic limitations on species' current ranges. One such limitation is land use, which fossil data suggest influences Afromontane tree distribution, preventing these trees from occupying warmer conditions than they do currently. We aimed to assess the degree to which the broader climatic tolerances revealed by fossil data buffer projected range loss from climate and land use for Afromontane trees.

Location

Africa.

Time period

Last 21,000 years.

Major taxa studied

Afromontane trees.

Methods

We used species distribution models informed by both current and fossil distributions to project future ranges under climate and land‐use projections.

Results

We found that projected range reductions are only slightly ameliorated by incorporation of fossil distributions, and these improvements diminish further under severe land‐use or climate change scenarios. Taxa that are less impacted by climate are more impacted by intense land use. Depending on the severity of climate and land use, the geographical extent of Afromontane tree species' ranges will contract by 40–85%, and the trees will be completely lost from large portions of Africa. We projected that the surviving species' ranges will become increasingly fragmented.

Main conclusions

Maintaining Afromontane ecosystems will require mitigation of both climate and land‐use change and protection of areas to optimize connectivity. Our findings caution that species with climate tolerances broader than their current range might not necessarily fare better under strong changes in climate or land use.

 
more » « less
NSF-PAR ID:
10461658
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
28
Issue:
7
ISSN:
1466-822X
Page Range / eLocation ID:
p. 992-1003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Coffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics.

    Location

    East Africa.

    Methods

    We created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores.

    Results

    Existing Worldclim temperature layers more closely matched temperatures under shade trees than temperatures in the open. Removal of shade trees, through warmer temperatures alone, would result in reduction of avian insectivore species by over 25%, a loss equivalent to 50 years of climate change under the most optimistic emissions scenario. Under the most extreme climate scenario and removal of shade trees, insectivore richness is projected to decline from a mean of 38 to fewer than 8 avian insectivore species.

    Main conclusions

    We found that shade trees on coffee farms already provide important cooler microclimates for avian insectivores. Future temperatures will become a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms.

     
    more » « less
  2. Abstract Aim

    Spatially explicit protections of coastal habitats determined on the current distribution of species and ecosystems risk becoming obsolete in 100 years if the movement of species ranges outpaces management action. Hence, a critical step of conservation is predicting the efficacy of management actions in future. We aimed to determine how foundational, habitat‐building species will respond to climate change in Fiji.

    Location

    The Republic of Fiji.

    Methods

    We develop species distribution models (SDMs) using MaxEnt, General Additive Models and Boosted Regression Trees and publicly available data from the Global Biodiversity Information Facility to predict changes in distribution of suitable habitat for mangrove forests, coral habitat, seagrass meadows and critical fisheries invertebrates under several IPCC climate change scenarios in 2070 or 2100. We then overlay predicted distribution models onto existing Fijian protected area network to assess whether today's conservation measures will afford protection to tomorrow's distributions.

    Results

    We found that mangrove suitability is projected to decrease along the Coral Coast and increase northward towards the Yasawa Islands due to precipitation changes. The response of seagrass meadows was predicted to be inconsistent and dependent on the climate scenario. Meanwhile, suitability for coral reefs was not predicted to decline significantly overall. The mangrove crabScylla serrata, an important resource for fisherwomen in Fiji, is projected to increase in habitat suitability while economically important sea cucumber species will have highly variable responses to climate change.

    Main conclusions

    Species distribution models are a critical tool for conservation managers, as linking spatial distribution data with future climate change scenarios can aid in the creation and resiliency of protected area programmes. New protected area designations should consider the future distribution of species to maximize benefits to those taxa.

     
    more » « less
  3. Abstract Aim

    Physiological tolerances and biotic interactions along habitat gradients are thought to influence species occurrence. Distributional differences caused by such forces are particularly noticeable on tropical mountains, where high species turnover along elevational gradients occurs over relatively short distances and elevational distributions of particular species can shift among mountains. Such shifts are interpreted as evidence of the importance of spatial variation in interspecific competition and habitat or climatic gradients. To assess the relative importance of competition and compression of habitat and climatic zones in setting range limits, we examined differences in elevational ranges of forest bird species among four Bornean mountains with distinct features.

    Location

    Bornean mountains Kinabalu, Mulu, Pueh and Topap Oso.

    Taxon

    Rain forest bird communities along elevational gradients.

    Methods

    We surveyed the elevational ranges of rain forest birds on four mountains in Borneo to test which environmental variables—habitat zone compression or presence of likely competitors—best predicted differences in elevational ranges of species among mountains. For this purpose, we used two complementary tests: a comparison of elevational range limits between pairs of mountains, and linear mixed models with naïve occupancy as the response variable.

    Results

    We found that lowland species occur higher in elevation on two small mountains compared to Mt. Mulu. This result is inconsistent with the expectation that distributions of habitats are elevationally compressed on small mountains, but is consistent with the hypothesis that a reduction in competition (likely diffuse) on short mountains, which largely lack montane specialist species, allows lowland species to occur higher in elevation. The relative influence of competition changes with elevation, and the correlation between lower range limits of montane species and the distribution of their competitors was weaker than in lowland species.

    Main conclusions

    These findings provide support for the importance of biotic interactions in setting elevational range limits of tropical bird species, although abiotic gradients explain the majority of distribution patterns. Thus, models predicting range shifts under climate change scenarios must include not only climatic variables, as is currently most common, but also information on potentially resulting changes in species interactions, especially for lowland species.

     
    more » « less
  4. Abstract Aim Rarity and geographic aspects of species distributions mediate their vulnerability to global change. We explore the relationships between species rarity and geography and their exposure to climate and land use change in a biodiversity hotspot. Location California, USA. Taxa One hundred and six terrestrial plants. Methods We estimated four rarity traits: range size, niche breadth, number of habitat patches, and patch isolation; and three geographic traits: mean elevation, topographic heterogeneity, and distance to coast. We used species distribution models to measure species exposure—predicted change in continuous habitat suitability within currently occupied habitat—under climate and land use change scenarios. Using regression models, decision‐tree models and variance partitioning, we assessed the relationships between species rarity, geography, and exposure to climate and land use change. Results Rarity, geography and greenhouse gas emissions scenario explained >35% of variance in climate change exposure and >61% for land use change exposure. While rarity traits (range size and number of habitat patches) were most important for explaining species exposure to climate change, geographic traits (elevation and topographic heterogeneity) were more strongly associated with species' exposure to land use change. Main conclusions Species with restricted range sizes and low topographic heterogeneity across their distributions were predicted to be the most exposed to climate change, while species at low elevations were the most exposed to habitat loss via land use change. However, even some broadly distributed species were projected to lose >70% of their currently suitable habitat due to climate and land use change if they are in geographically vulnerable areas, emphasizing the need to consider both species rarity traits and geography in vulnerability assessments. 
    more » « less
  5. Abstract Aim

    Biodiversity on Earth is threatened by climate change. Despite the vulnerability of freshwater habitats to human impacts, most climate change projections have focused on terrestrial systems. Here, we examined how the current distributions and biodiversity of stream taxa might change under mitigated, stabilizing and increasing greenhouse gas emissions.

    Location

    Conterminous USA.

    Time period

    Present day to 2070.

    Major taxa studied

    Stream diatoms, insects and fish.

    Methods

    We developed species distribution models for 336 freshwater taxa from 1,227 distinct stream localities using water chemistry, watershed and climatic variables. Models based only on climate were used to project changes in the distributions and biodiversity of cold‐ versus warm‐water taxa under representative concentration pathways (RCPs) ranging from 2.6 to 8.5 W/m2.

    Results

    In all three organismal groups, climate emerged as the strongest predictor of species distributions, providing comparable explanatory power to water chemistry and watershed variables combined. The RCP‐based projections suggested a widespread expansion of warm‐water taxa, outpacing the decline of cold‐water taxa. Consequently, overall species richness would increase, but beta diversity would decrease drastically with the severity of climate change. A closer look at individual taxa and functional guilds revealed that vulnerable cold‐water taxa included: (a) diatom guilds forming the base and bulk of the biofilm; (b) environmentally sensitive insects, characteristic of unimpacted streams; and (c) ecologically and recreationally important salmonids, which were forecast to diminish dramatically in source habitats. Warm‐water fish projected to increase their distributions include bait bucket release minnows and dominant predators.

    Main conclusions

    Our results suggest potentially devastating impacts of climate change on stream ecosystems, with the restructuring of diatom, insect and fish communities, diminished distributions of functionally important taxa and widespread expansion of warm‐water taxa, giving rise to biotic homogenization. Given that the magnitude of these biotic shifts depends on the severity of climate change, appropriate current policy decisions are necessary to preserve freshwater ecosystems.

     
    more » « less