skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differential gene expression associated with fungal trophic shifts along the senescence gradient of the moss Dicranum scoparium
Summary Bryophytes harbour microbiomes, including diverse communities of fungi. The molecular mechanisms by which perennial mosses interact with these fungal partners along their senescence gradients are unknown, yet this is an ideal system to study variation in gene expression associated with trophic state transitions. We investigated differentially expressed genes of fungal communities and their hostDicranum scopariumacross its naturally occurring senescence gradient using a metatranscriptomic approach. Higher activity of fungal nutrient‐related (carbon, nitrogen, phosphorus and sulfur) transporters and Carbohydrate‐Active enZyme (CAZy) genes was detected toward the bottom, partially decomposed, layer of the moss. The most prominent variation in the expression levels of fungal nutrient transporters was from inorganic nitrogen‐related transporters, whereas the breakdown of organonitrogens was detected as the most enriched gene ontology term for the hostD. scoparium, for those transcripts having higher expression in the partially decomposed layer. The abundance of bacterial rRNA transcripts suggested that more living members ofCyanobacteriaare associated with the photosynthetic layer ofD. scoparium, while members ofRhizobialesare detected throughout the gametophytes. Plant genes for specific fungal–plant communication, including defense responses, were differentially expressed, suggesting that different genetic pathways are involved in plant‐microbe crosstalk in photosynthetic tissues compared to partially decomposed tissues.  more » « less
Award ID(s):
1701836
PAR ID:
10461671
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
21
Issue:
7
ISSN:
1462-2912
Page Range / eLocation ID:
p. 2273-2289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Planar structures dramatically increase the surface‐area‐to‐volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among threeSansivieriaspecies (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar‐leaf speciesSansevieria subspicataandSansevieria trifasciataand compared these with expression patterns within the cylindrically leavedSansevieria cylindrica. TwoYABBYfamily genes, homologs ofFILAMENTOUS FLOWERandDROOPING LEAF, are overexpressed in the center leaf tissue in the planar‐leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water‐storage tissue and enhances resistance to aridity. This suggests that the cylindrical‐leaf inS. cylindricais analogous to the central leaf tissue in the planar‐leaf species. Furthermore, the congruence of the expression patterns of theseYABBYgenes inSansevieriawith expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox. 
    more » « less
  2. Summary Like metazoans, plants use small regulatoryRNAs (sRNAs) to direct gene expression. Several classes ofsRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) andtrans‐acting small interferingRNAs (ta‐siRNAs) mainly inhibit gene expression at post‐transcriptional levels. In the past decades, plant miRNAs and ta‐siRNAs have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNAs and ta‐siRNAs are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNAs and ta‐siRNAs in plant physiology and development. 
    more » « less
  3. Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.AtCCC‐GFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters. 
    more » « less
  4. Abstract ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity. 
    more » « less
  5. Summary Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although theS‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera. We have now identified these genes.We used deletion mapping to identify, and then sequence,BACclones and genome scaffolds to constructS/shaplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.Thes‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS‐haplotype possessed three additional genes and two inversions.TsSPH1was expressed in filaments and anthers,TsYUC6in anthers andTsBAHDin pistils. Long‐homostyle mutants did not possessTsBAHDand a short‐homostyle mutant did not expressTsSPH1.Three hemizygous genes appear to determine S‐morph characteristics inT. subulata. Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,TsBAHD, differs from that ofPrimula, but both may inactivate brassinosteroids causing short styles.TsYUC6is involved in auxin synthesis and likely determines pollen characteristics.TsSPH1is likely involved in filament elongation. We propose an incompatibility mechanism involvingTsYUC6andTsBAHD. 
    more » « less