Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex‐specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.
more » « less- PAR ID:
- 10461700
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Morphology
- Volume:
- 280
- Issue:
- 5
- ISSN:
- 0362-2525
- Page Range / eLocation ID:
- p. 731-738
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Background In most arthropods, adult females are larger than males, and male competition is a race to quickly locate and mate with scattered females (scramble competition polygyny). Variation in body size among males may confer advantages that depend on context. Smaller males may be favored due to more efficient locomotion leading to higher mobility during mate searching. Alternatively, larger males may benefit from increased speed and higher survivorship. While the relationship between male body size and mobility has been investigated in several systems, how different aspects of male body morphology specifically affect their locomotor performance in different contexts is often unclear. Results Using a combination of empirical measures of flight performance and modelling of body aerodynamics, we show that large body size impairs flight performance in male leaf insects ( Phyllium philippinicum ), a species where relatively small and skinny males fly through the canopy in search of large sedentary females. Smaller males were more agile in the air and ascended more rapidly during flight. Our models further predicted that variation in body shape would affect body lift and drag but suggested that flight costs may not explain the evolution of strong sexual dimorphism in body shape in this species. Finally, empirical measurements of substrate adhesion and subsequent modelling of landing impact forces suggested that smaller males had a lower risk of detaching from the substrates on which they walk and land. Conclusions By showing that male body size impairs their flight and substrate adhesion performance, we provide support to the hypothesis that smaller scrambling males benefit from an increased locomotor performance and shed light on the evolution of sexual dimorphism in scramble competition mating systems.more » « less
-
Abstract Sexual selection reflects the joint contributions of precopulatory selection, which arises from variance in mating success, and postcopulatory selection, which arises from variance in fertilization success. The relative importance of each episode of selection is variable among species, and comparative evidence suggests that traits targeted by precopulatory selection often covary in expression with those targeted by postcopulatory selection when assessed across species, although the strength and direction of this association varies considerably among taxa. We tested for correlated evolution between targets of pre‐ and postcopulatory selection using data on sexual size dimorphism (
SSD ) and testis size from 151 species of squamate reptiles (120 lizards, 31 snakes). In squamates, male–male competition for mating opportunities often favors large body size, such that the degree of male‐biasedSSD is associated with the intensity of precopulatory selection. Likewise, competition for fertilization often favors increased sperm production, such that testis size (relative to body size) is associated with the intensity of postcopulatory selection. Using both conventional and phylogenetically based analyses, we show that testis size consistently decreases as the degree of male‐biasedSSD increases across lizards and snakes. This evolutionary pattern suggests that strong precopulatory selection may often constrain the opportunity for postcopulatory selection and that the relative importance of each selective episode may determine the optimal resolution of energy allocation trade‐offs between traits subject to each form of sexual selection. -
Abstract Objective Reconstructing the social lives of extinct primates is possible only through an understanding of the interplay between morphology, sexual selection pressures, and social behavior in extant species. Somatic sexual dimorphism is an important variable in primate evolution, in part because of the clear relationship between the strength and mechanisms of sexual selection and the degree of dimorphism. Here, we examine body size dimorphism across ontogeny in male and female rhesus macaques to assess whether it is primarily achieved via bimaturism as predicted by a polygynandrous mating system, faster male growth indicating polygyny, or both.
Methods We measured body mass in a cross‐sectional sample of 362 free‐ranging rhesus macaques from Cayo Santiago, Puerto Rico to investigate size dimorphism: (1) across the lifespan; and (2) as an outcome of sex‐specific growth strategies, including: (a) age of maturation; (b) growth rate; and (c) total growth duration, using regression models fit to sex‐specific developmental curves.
Results Significant body size dimorphism was observed by prime reproductive age with males 1.51 times the size of females. Larger male size resulted from a later age of maturation (males: 6.8–7.8 years vs. females: 5.5–6.5 years; logistic model) and elevated growth velocity through the pre‐prime period (LOESS model). Though males grew to larger sizes overall, females maintained adult size for longer before senescence (quadratic model).
Discussion The ontogeny of size dimorphism in rhesus macaques is achieved by bimaturism and a faster male growth rate. Our results provide new data for understanding the development and complexities of primate dimorphism.
-
Abstract Objectives The function of the browridge in primates is a subject of enduring debate. Early studies argued for a role in resisting masticatory stresses, but recent studies have suggested sexual signaling as a biological role. We tested associations between circumorbital form, diet, oral processing, and social behavior in two species of colobus monkey–the king colobus (
Colobus polykomos ) and western red or bay colobus (Piliocolobus badius ).Materials and methods We quantified circumorbital size and dimorphism in a sample of 98 crania. Controlling for age and facial size, we tested whether variation in circumorbital morphology can be explained by variation in diet, oral processing behavior, masticatory muscle size, and mating system. To contextualize our results, we included a broader sample of facial dimorphism for 67 anthropoid species.
Results Greater circumorbital thickness is unrelated to the stresses of food processing. King colobus engages in longer bouts of anterior tooth use, chews more per ingestive event, and processes a tougher diet, yet circumorbital thickness of
C. polykomos is reduced compared toP. badius . Differences in circumorbital development do not vary with wear or facial size. Greater sexual dimorphism is present inP. badius ; comparisons across anthropoids indicated patterns of circumorbital dimorphism were decoupled from overall size dimorphism.Conclusions The expanded circumorbits of male red colobus monkeys evolved in response to intense male–male competition. This hypothesis is consistent with the pattern across anthropoid primates and highlights the underappreciated role of sexual selection in shaping the primate face.
-
Abstract Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes‐large averages, phylogenetic
t ‐tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex‐specific reproductive roles, size, jumping‐related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans.