skip to main content


Title: Uniform and lateral preferential flows under flood irrigation at field scale
Abstract

Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.

 
more » « less
NSF-PAR ID:
10461716
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
33
Issue:
15
ISSN:
0885-6087
Page Range / eLocation ID:
p. 2131-2147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A portion of water not consumed by crops during flood irrigation can flow back across the surface or through the subsurface to adjacent surface water bodies and streams as return flow. Few studies have directly addressed subsurface processes governing return flow and the importance of structural complexity on hydrologic process representation. It is challenging to measure and model these subsurface flow paths using traditional hydrologic observations. In this study, we assess the impact of subsurface structural complexity on vadose zone flow representation in a two‐dimensional transport model by varying structural complexity derived from background geophysical data. We assessed four model structures each with three soil types of homogeneous hydrologic properties, two of which were evaluated with and without an anisotropy factor. Wetting front arrival times, derived from time‐lapse electrical resistivity measurements during flood irrigation field experiments, were used to evaluate the different representations of soil profile structures. These data indicated both vertical and lateral preferential flow in the subsurface during flood irrigation. Inclusion of anisotropy in the saturated hydraulic conductivity field improved the ability to model subsurface hydrologic behavior when flow processes shifted from uniform to heterogeneous flow, as occurs with lateral subsurface return flow under flood irrigation driven by a large pressure gradient. This reduced the need for detailed spatial discretization to represent these observed subsurface flow processes. The resulting simple three‐layer model structure was better able to model both the vertical and lateral flow processes than a more complex geospatial structure, suggesting that overinterpretation of smoothed inverted profiles could lead to misrepresentation of the subsurface structure.

     
    more » « less
  2. Abstract

    The complex ecohydrological processes of rangelands can be studied through the framework of ecological sites (ESs) or hillslope‐scale soil–vegetation complexes. High‐quality hydrologic field investigations are needed to quantitatively link ES characteristics to hydrologic function. Geophysical tools are useful in this context because they provide valuable information about the subsurface at appropriate spatial scales. We conducted 20 field experiments in which we deployed time‐lapse electrical resistivity tomography (ERT), variable intensity rainfall simulation, ground‐penetrating radar (GPR), and seismic refraction, on hillslope plots at five different ESs within the Upper Crow Creek Watershed in south‐east Wyoming. Surface runoff was measured using a precalibrated flume. Infiltration data from the rainfall simulations, coupled with site‐specific resistivity–water content relationships and ERT datasets, were used to spatially and temporally track the progression of the wetting front. First‐order constraints on subsurface structure were made at each ES using the geophysical methods. Sites ranged from infiltrating 100% of applied rainfall to infiltrating less than 60%. Analysis of covariance results indicated significant differences in the rate of wetting front progression, ranging from 0.346 m min−1/2for sites with a subsurface dominated by saprolitic material to 0.156 m min−1/2for sites with a well‐developed soil profile. There was broad agreement in subsurface structure between the geophysical methods with GPR typically providing the most detail. Joint interpretation of the geophysics showed that subsurface features such as soil layer thickness and the location of subsurface obstructions such as granite corestones and material boundaries had a large effect on the rate of infiltration and subsurface flow processes. These features identified through the geophysics varied significantly by ES. By linking surface hydrologic information from the rainfall simulations with subsurface information provided by the geophysics, we can characterize the ES‐specific hydrologic response. Both surface and subsurface flow processes differed among sites and are directly linked to measured characteristics.

     
    more » « less
  3. Abstract

    Understanding land use/land cover (LULC) effects on tropical soil infiltration is crucial for maximizing watershed scale hydro‐ecosystem services and informing land managers. This paper reports results from a multiyear investigation of LULC effects on soil bulk infiltration in steep, humid tropical, and lowland catchments. A rainfall simulator applied water at measured rates on 2 × 6 m plots producing infiltration through structured, granulated, and macroporous Ferralsols in Panama's central lowlands. Time‐lapse electrical resistivity tomography (ERT) helped to visualize infiltration depth and bulk velocity. A space‐for‐time substitution methodology allowed a land‐use history investigation by considering the following: (a) a continuously heavy‐grazed cattle pasture, (b) a rotationally grazed traditional cattle pasture, (c) a 4‐year‐old (y.o.) silvopastoral system with nonnative improved pasture grasses and managed intensive rotational grazing, (d) a 7 y.o. teak (Tectona grandis) plantation, (e) an approximately 10 y.o. secondary succession forest, (f) a 12 y.o. coffee plantation(Coffea canephora), (g) an approximately 30 y.o. secondary succession forest, and (h) a >100 y.o. secondary succession forest. Within a land cover, unique plot sites totalled two at (a), (c), (d), (e), and (g); three at (b); and one at (f) and (h). Our observations confirmed measured infiltration scale dependency by comparing our 12 m2plot‐scale measurements against 8.9 cm diameter core‐scale measurements collected by others from nearby sites. Preferential flow pathways (PFPs) significantly increased soil infiltration capacity, particularly in forests greater than or equal to 10 y.o. Time‐lapse ERT observations revealed shallower rapid bulk infiltration and increased rapid lateral subsurface flow in pasture land covers when compared with forest land covers and highlighted how much subsurface flow pathways can vary within the Ferralsol soil class. Results suggest that LULC effects on PFPs are the dominant mechanism by which LULC affects throughfall partitioning, runoff generation, and flow pathways.

     
    more » « less
  4. Abstract

    Predicting fluid biogeochemistry in the vadose zone is difficult because of time‐dependent variation in multiple controlling factors, such as temperature, moisture, and biological activity. Furthermore, soils are multicomponent, heterogeneous porous media where manifold reactions may be affecting solution chemistry. We postulated that ecosystem‐scale processes, such as carbon fixation and ecohydrologic partitioning, control subsurface biogeochemical reactions, including mineral weathering. To test this hypothesis, we applied a novel “instrumented pedon” research approach. Analysis of the data streams demonstrates the interactions between pulsed wetting events and biogeochemical processes in the soil profile, and along groundwater flow paths. Rapid wetting front propagation into dry soil resulted in a pulsed increase in CO2partial pressure in deeper soil layers, whereas wetting front propagation into a premoistened soil profile showed the opposite effect. The apparent respiratory quotient (ARQ), calculated from CO2and O2fluxes, deviated from expected oxidative ratios particularly during soil wetting events. These deviations were correlated in time with pore water geochemical responses, revealing that a fraction of the respired CO2was consumed locally in pulsed silicate weathering events that accompanied wetting‐front propagation. However, most of this CO2was dissolved in the soil pore water and transported downgradient, and along the soil‐bedrock interface, where a portion of it was further consumed in silicate weathering reactions, and another portion was degassed to the atmosphere. These results highlight the tight coupling that exists between physical, biological, and chemical processes, on event time scales, during incremental co‐evolution of the critical zone, particularly in water‐limited systems.

     
    more » « less
  5. Soil biota generate CO2 that can vertically export to the atmosphere, and dissolved organic and inorganic carbon (DOC and DIC) that can laterally export to streams and accelerate weathering. These processes are regulated by external hydroclimate forcing and internal structures (permeability distribution), the relative influences of which are rarely studied. Understanding these interactions is essential a hydrological extremes intensify in the future. Here we explore the question: How and to what extent do hydrological and permeability distribution conditions regulate soil carbon transformations and chemical weathering? We address the questions using a hillslope reactive transport model constrained by data from the Fitch Forest (Kansas, United States). Numerical experiments were used to mimic hydrological extremes and variable shallow-versus-deep permeability contrasts. Results demonstrate that under dry conditions (0.08 mm/day), long water transit times led to more mineralization of organic carbon (OC) into inorganic carbon (IC) form (>98\%). Of the IC produced, ~ 75\% was emitted upward as CO2 gas and ~ 25\% was exported laterally as DIC into the stream. Wet conditions (8.0 mm/day) resulted in less mineralization (~88\%), more DOC production (~12\%), and more lateral fluxes of IC (~50\% of produced IC). Carbonate precipitated under dry conditions and dissolved under wet conditions as the fast flow rapidly droves the reaction to disequilibrium. The results depict a conceptual hillslope model that prompts four hypotheses for our community to test. H1: Droughts enhance carbon mineralization and vertical upward carbon fluxes, whereas large hydrological events such as storms and flooding enhance subsurface vertical connectivity, reduce transit times, and promote lateral export. H2: The role of weathering as a net carbon sink or source to the atmosphere depends on the interaction between hydrologic flows and lithology: transition from droughts to storms can shift carbonate from a carbon sink (mineral precipitation) to carbon source (dissolution). H3: Permeability contrasts regulate the lateral flow partitioning via shallow flow paths versus deeper groundwater though this alter reaction rates negligibly. H4: Stream chemistry reflect flow paths and can potentially quantify water transit times: solutes enriched in shallow soils have a younger water signature; solutes abundant at depth carry older water signature. 
    more » « less