skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural Modeling of Cytokine-Receptor-JAK2 Signaling Complexes Using AlphaFold Multimer
Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). These cell-surface single-pass transmembrane (TM) glycoproteins regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated here using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to TM α-helices of the active TPOR dimer was proposed. The models also help elucidating the molecular basis of oncogenic mutations that may involve a non-canonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.  more » « less
Award ID(s):
1855425 2011234
PAR ID:
10461776
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Chemical Information and Modeling
ISSN:
1549-9596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tyrosine kinase receptor (RTK) ligation and dimerization is a key mechanism for translating external cell stimuli into internal signaling events. This process is critical to several key cell and physiological processes, such as in angiogenesis and embryogenesis, among others. While modulating RTK activation is a promising therapeutic target, RTK signaling axes have been shown to involve complicated interactions between ligands and receptors both within and across different protein families. In angiogenesis, for example, several signaling protein families, including vascular endothelial growth factors and platelet-derived growth factors, exhibit significant cross-family interactions that can influence pathway activation. Computational approaches can provide key insight to detangle these signaling pathways but have been limited by the sparse knowledge of these cross-family interactions. Here, we present a framework for studying known and potential non-canonical interactions. We constructed generalized models of RTK ligation and dimerization for systems of two, three and four receptor types and different degrees of cross-family ligation. Across each model, we developed parameter-space maps that fully determine relative pathway activation for any set of ligand-receptor binding constants, ligand concentrations and receptor concentrations. Therefore, our generalized models serve as a powerful reference tool for predicting not only known ligand: Receptor axes but also how unknown interactions could alter signaling dimerization patterns. Accordingly, it will drive the exploration of cross-family interactions and help guide therapeutic developments across processes like cancer and cardiovascular diseases, which depend on RTK-mediated signaling. 
    more » « less
  2. The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt -shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signalinducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations. 
    more » « less
  3. The B cell and T cell antigen receptors (BCR and TCR) share a common architecture in which variable dimeric antigen-binding modules assemble with invariant dimeric signaling modules to form functional receptor complexes. In the TCR, a highly conserved T cell receptor αβ (TCRαβ) transmembrane (TM) interface forms a rigid structure around which its three dimeric signaling modules assemble through well-characterized polar interactions. Noting that the key features stabilizing this TCRαβ TM interface also appear with high evolutionary conservation in the TM sequences of the membrane immunoglobulin (mIg) heavy chains that form the BCR’s homodimeric antigen-binding module, we asked whether the BCR contained an analogous TM structure. Using an unbiased biochemical and computational modeling approach, we found that the mouse IgM BCR forms a core TM structure that is remarkably similar to that of the TCR. This structure is reinforced by a network of interhelical hydrogen bonds, and our model is nearly identical to the arrangement observed in the just-released cryo-electron microscopy (cryo-EM) structures of intact human BCRs. Our biochemical analysis shows that the integrity of this TM structure is vital for stable assembly with the BCR signaling module CD79AB in the B cell endoplasmic reticulum, and molecular dynamics simulations indicate that BCRs of all five isotypes can form comparable structures. These results demonstrate that, despite their many differences in composition, complexity, and ligand type, TCRs and BCRs rely on a common core TM structure that has been shaped by evolution for optimal receptor assembly and stability in the cell membrane. 
    more » « less
  4. Abstract Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs. 
    more » « less
  5. Abstract The paucity of targeted therapies for triple‐negative breast cancer (TNBC) causes patients with this aggressive disease to suffer a poor clinical prognosis. A promising target for therapeutic intervention is the Wnt signaling pathway, which is activated in TNBC cells when extracellular Wnt ligands bind overexpressed Frizzled7 (FZD7) transmembrane receptors. This stabilizes intracellular β‐catenin proteins that in turn promote transcription of oncogenes that drive tumor growth and metastasis. To suppress Wnt signaling in TNBC cells, this work develops therapeutic nanoparticles (NPs) functionalized with FZD7 antibodies and β‐catenin small interfering RNAs (siRNAs). The antibodies enable TNBC cell specific binding and inhibit Wnt signaling by locking FZD7 receptors in a ligand unresponsive state, while the siRNAs suppress β‐catenin through RNA interference. Compared to NPs coated with antibodies or siRNAs individually, NPs coated with both agents more potently reduce the expression of several Wnt related genes in TNBC cells, leading to greater inhibition of cell proliferation, migration, and spheroid formation. In two murine models of metastatic TNBC, the dual antibody/siRNA nanocarriers outperformed controls in terms of inhibiting tumor growth, metastasis, and recurrence. These findings demonstrate suppressing Wnt signaling at both the receptor and mRNA levels via antibody/siRNA nanocarriers is a promising approach to combat TNBC. 
    more » « less