skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A new approach of microbiome monitoring in the built environment: feasibility analysis of condensation capture
Abstract Background Humans emit approximately 30 million microbial cells per hour into their immediate vicinity. However, sampling of aerosolized microbial taxa (aerobiome) remains largely uncharacterized due to the complexity and limitations of sampling techniques, which are highly susceptible to low biomass and rapid sample degradation. Recently, there has been an interest in developing technology that collects naturally occurring water from the atmosphere, even within the built environment. Here, we analyze the feasibility of indoor aerosol condensation collection as a method to capture and analyze the aerobiome. Methods Aerosols were collected via condensation or active impingement in a laboratory setting over the course of 8 h. Microbial DNA was extracted from collected samples and sequenced (16S rRNA) to analyze microbial diversity and community composition. Dimensional reduction and multivariate statistics were employed to identify significant ( p  < 0.05) differences in relative abundances of specific microbial taxa observed between the two sampling platforms. Results Aerosol condensation capture is highly efficient with a yield greater than 95% when compared to expected values. Compared to air impingement, aerosol condensation showed no significant difference (ANOVA, p  > 0.05) in microbial diversity. Among identified taxa, Streptophyta and Pseudomonadales comprised approximately 70% of the microbial community composition. Conclusion The results suggest that condensation of atmospheric humidity is a suitable method for the capture of airborne microbial taxa reflected by microbial community similarity between devices. Future investigation of aerosol condensation may provide insight into the efficacy and viability of this new tool to investigate airborne microorganisms. Importance On average, humans shed approximately 30 million microbial cells each hour into their immediate environment making humans the primary contributor to shaping the microbiome found within the built environment. In addition, recent events have highlighted the importance of understanding how microorganisms within the built environment are aerosolized and dispersed, but more importantly, the lack in development of technology that is capable of actively sampling the ever-changing aerosolized microbiome, i.e., aerobiome. This research highlights the capability of sampling the aerobiome by taking advantage of naturally occurring atmospheric humidity. Our novel approach reproduces the biological content in the atmosphere and can provide insight into the environmental microbiology of indoor spaces.  more » « less
Award ID(s):
2041918
PAR ID:
10461829
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Microbiome
Volume:
11
Issue:
1
ISSN:
2049-2618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An accepted murine analogue for the environmental behavior of human SARS coronaviruses was aerosolized in microdroplets of its culture media and saliva to observe the decay of its airborne infectious potential under relative humidity (RH) conditions relevant to conditioned indoor air. Contained in a dark, 10 m3 chamber maintained at 22°C, murine hepatitis virus (MHV) was entrained in artificial saliva particles that were aerosolized in size distributions that mimic SARS-CoV-2 virus expelled from infected humans’ respiration. As judged by quantitative PCR, more than 95% of the airborne MHV aerosolized was recovered from microdroplets with mean aerodynamic diameters between 0.56 and 5.6 μm. As judged by its half-life, calculated from the median tissue culture infectious dose (TCID50), saliva was protective of airborne murine coronavirus through a RH range recommended for conditioned indoor air (60% < RH < 40%; average half-life = 60 minutes). However, its average half-life doubled to 120 minutes when RH was maintained at 25%. Saliva microaerosol was dominated by carbohydrates, which presented hallmarks of vitrification without efflorescence at low RH. These results suggest that dehydrating carbohydrates can affect the infectious potential coronaviruses exhibit while airborne, significantly extending their persistence under the drier humidity conditions encountered indoors. 
    more » « less
  2. null (Ed.)
    Microbes are abundant inhabitants of the near-surface atmosphere in urban areas. The distribution of microbial communities may benefit or hinder human wellbeing and ecosystem function. Surveys of airborne microbial diversity are uncommon in both natural and built environments and those that investigate diversity are stationary in the city, thus missing continuous exposure to microbes that covary with three-dimensional urban structure. Individuals in cities are generally mobile and would be exposed to diverse urban structures outdoors and within indoor-transit systems in a day. We used mobile monitoring of microbial diversity and geographic information system spatial analysis, across Philadelphia, Pennsylvania, USA in outdoor and indoor-transit (subways and train cars) environments. This study identifies to the role of the three-dimensional urban landscape in structuring atmospheric microbiomes and employs mobile monitoring over ~1,920 kilometers to measure continuous biodiversity. We found more diverse communities outdoors that significantly differ from indoor-transit air in microbial community structure, function, likely source environment, and potentially pathogenic fraction of the community. Variation in the structure of the urban landscape was associated with diversity and function of the near-surface atmospheric microbiome in outdoor samples. 
    more » « less
  3. Zhou, Ning-Yi (Ed.)
    ABSTRACT Aerobiology research focusing on bioaerosol particle dynamics has catalogued the identity, distribution, and abundance of airborne microbes in a broad variety of indoor environments and, more recently, indoor disinfection methods for medically relevant microbes. Given their importance in environmental health and our constant exposure to airborne microbes in our daily lives, surprisingly little is known about the activity of live bioaerosols and their metabolic responses to aerosolization and suspension stress. In this context, microbial messenger RNA (mRNA) is a powerful information source of near-real-time organismal responses that cannot be attained through genomic, proteomic, or metabolomic studies. This review discusses current knowledge from transcriptomic studies describing airborne bacterial cellular activity in response to a myriad of environmental stresses imparted rapidly upon aerosolization and continued suspension as a microscopic bioaerosol. In the context of transcriptome profiling, potential artifacts associated with aerosolization/collection of bioaerosols are discussed from the perspective of preserving mRNA and maintaining its fidelity as it exists in airborne microbes. Recommendations for advancing live bioaerosol metabolic profiling through gene expression studies are presented to mitigate inherent artifacts and challenges with modern bioaerosol experiments. These recommendations include the use of larger experimental chambers, temperature control during aerosolization processes, and liquid capture bioaerosol sampling into a nucleic acid preservative to improve the fidelity of collected RNA and better capture the transcriptional activity of airborne microorganisms. Eventually, improvements in profiling bioaerosol activity can contribute toward answering fundamental questions on the aerobiome such as: is the atmosphere a temporary highway or a habitat for microorganisms? 
    more » « less
  4. Abstract BackgroundMicrobes have fundamental roles underpinning the functioning of our planet, they are involved in global carbon and nutrient cycling, and support the existence of multicellular life. The mangrove ecosystem is nutrient limited and if not for microbial cycling of nutrients, life in this harsh environment would likely not exist. The mangroves of Southeast Asia are the oldest and most biodiverse on the planet, and serve vital roles helping to prevent shoreline erosion, act as nursery grounds for many marine species and sequester carbon. Despite these recognised benefits and the importance of microbes in these ecosystems, studies examining the mangrove microbiome in Southeast Asia are scarce.cxs ResultsHere we examine the microbiome ofAvicenia albaandSonneratia albaand identify a core microbiome of 81 taxa. A further eight taxa (Pleurocapsa,Tunicatimonas,Halomonas,Marinomonas,Rubrivirga,Altererythrobacte,Lewinella,andErythrobacter) were found to be significantly enriched in mangrove tree compartments suggesting key roles in this microbiome. The majority of those identified are involved in nutrient cycling or have roles in the production of compounds that promote host survival. ConclusionThe identification of a core microbiome furthers our understanding of mangrove microbial biodiversity, particularly in Southeast Asia where studies such as this are rare. The identification of significantly different microbial communities between sampling sites suggests environmental filtering is occurring, with hosts selecting for a microbial consortia most suitable for survival in their immediate environment. As climate change advances, many of these microbial communities are predicted to change, however, without knowing what is currently there, it is impossible to determine the magnitude of any deviations. This work provides an important baseline against which change in microbial community can be measured. 
    more » « less
  5. Abstract BackgroundRoot and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). ResultsTo capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. ConclusionsOur results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions. 
    more » « less