Abstract As a highly contagious livestock viral disease, foot-and-mouth disease poses a great threat to the beef-cattle industry. Direct animal movement is always considered as a major route for between-farm transmission of FMD virus. Sharing contaminated equipment and vehicles have also attracted increasing interests as an indirect but considerable route for FMD virus transmission. With the rapid development of communication technologies, information-sharing techniques have been used to control epidemics. In this paper, we built farm-level time-series three-layer networks to simulate the between-farm FMD virus transmission in southwest Kansas by cattle movements (direct-contact layer) and truck visits (indirect-contact layer) and evaluate the impact of information-sharing techniques (information-sharing layer) on mitigating the epidemic. Here, the information-sharing network is defined as the structure that enables the quarantine of farms that are connected with infected farms. When a farm is infected, its infection status is shared with the neighboring farms in the information-sharing network, which in turn become quarantined. The results show that truck visits can enlarge the epidemic size and prolong the epidemic duration of the FMD outbreak by cattle movements, and that the information-sharing technique is able to mitigate the epidemic. The mitigation effect of the information-sharing network varies with the information-sharing network topology and different participation levels. In general, an increased participation leads to a decreased epidemic size and an increased quarantine size. We compared the mitigation performance of three different information-sharing networks (random network, contact-based network, and distance-based network) and found the outbreak on the network with contact-based information-sharing layer has the smallest epidemic size under almost any participation level and smallest quarantine size with high participation. Furthermore, we explored the potential economic loss from the infection and the quarantine. By varying the ratio of the average loss of quarantine to the loss of infection, we found high participation results in reduced economic losses under the realistic assumption that culling costs are much greater than quarantine costs.
more »
« less
RoADTrain: Route-Assisted Decentralized Peer Model Training among Connected Vehicles
Fully decentralized model training for on-road vehicles can leverage crowdsourced data while not depending on central servers, infrastructure or Internet coverage. However, under unreliable wireless communication and short contact duration, model sharing among peer vehicles may suffer severe losses thus fail frequently. To address these challenges, we propose “RoADTrain”, a route-assisted decentralized peer model training approach that carefully chooses vehicles with high chances of successful model sharing. It bounds the per round communication time yet retains model performance under vehicle mobility and unreliable communication. Based on shared route information, a connected cluster of vehicles can estimate and embed the link reliability and contact duration information into the communication topology. We decompose the topology into subgraphs supporting parallel communication, and identify a subset of them with the highest algebraic connectivity that can maximize the speed of the information flow in the cluster with high model sharing successes, thus accelerating model training in the cluster. We conduct extensive evaluation on driving decision making models using the popular CARLA simulator. RoADTrain achieves comparable driving success rates and 1.2−4.5× faster convergence than representative decentralized learning methods that always succeed in model sharing (e.g., SGP), and significantly outperforms other benchmarks that consider losses by 17−27% in the hardest driving conditions. These demonstrate that route sharing enables shrewd selection of vehicles for model sharing, thus better model performance and faster convergence against wireless losses and mobility.
more »
« less
- Award ID(s):
- 2007715
- PAR ID:
- 10462044
- Date Published:
- Journal Name:
- IEEE International Conference on Distributed Computing Systems (ICDCS)
- ISSN:
- 0743-166X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fully autonomous or “self-driving” vehicles are emerging mobility technology with potential benefits over conventional motor vehicles. Proponents argue that the widespread adoption of autonomous vehicles may save countless lives and millions of dollars annually by minimizing the likelihood of deadly vehicle crashes. However, widespread adoption of automated-driving technologies is required to realize such benefits, which research suggests, may be undermined by consumer concerns about vehicle operation transparency. Further, there is insufficient research into consumer perceptions of an autonomous vehicle’s communication and information-sharing behavior, which may impact their likelihood of purchasing one. We conducted a study using a 63-question internet-based survey distributed in the United States to licensed drivers 18 years of age and older (n=996) to examine consumer perceptions of autonomous vehicles across accountability, communication, information sharing, and concerns. Our findings show that consumer perceptions of the four dimensions vary significantly across race, gender, and ability.more » « less
-
One of the challenges for multiagent reinforcement learning (MARL) is designing efficient learning algorithms for a large system in which each agent has only limited or partial information of the entire system. Whereas exciting progress has been made to analyze decentralized MARL with the network of agents for social networks and team video games, little is known theoretically for decentralized MARL with the network of states for modeling self-driving vehicles, ride-sharing, and data and traffic routing. This paper proposes a framework of localized training and decentralized execution to study MARL with the network of states. Localized training means that agents only need to collect local information in their neighboring states during the training phase; decentralized execution implies that agents can execute afterward the learned decentralized policies, which depend only on agents’ current states. The theoretical analysis consists of three key components: the first is the reformulation of the MARL system as a networked Markov decision process with teams of agents, enabling updating the associated team Q-function in a localized fashion; the second is the Bellman equation for the value function and the appropriate Q-function on the probability measure space; and the third is the exponential decay property of the team Q-function, facilitating its approximation with efficient sample efficiency and controllable error. The theoretical analysis paves the way for a new algorithm LTDE-Neural-AC, in which the actor–critic approach with overparameterized neural networks is proposed. The convergence and sample complexity are established and shown to be scalable with respect to the sizes of both agents and states. To the best of our knowledge, this is the first neural network–based MARL algorithm with network structure and provable convergence guarantee.more » « less
-
We consider the problem of controlling a set of dynamically decoupled plants where the plants' subcontrollers communicate with each other according to a fixed and known network topology. We assume the communication to be instantaneous but there is a fixed processing delay associated with incoming transmissions. We provide explicit closed-form expressions for the optimal decentralized controller under these communication constraints and using standard LQG assumptions for the plants and cost function. Although this problem is convex, it is challenging due to the irrationality of continuous-time delays and the decentralized information-sharing pattern. We show that the optimal subcontrollers each have an observer-regulator architecture containing LTI and FIR blocks and we characterize the signals that subcontrollers should transmit to each other across the network.more » « less
-
null (Ed.)In this paper, we consider federated learning in wireless edge networks. Transmitting stochastic gradients (SG) or deep model's parameters over a limited-bandwidth wireless channel can incur large training latency and excessive power consumption. Hence, data compressing is often used to reduce the communication overhead. However, efficient communication requires the compression algorithm to satisfy the constraints imposed by the communication medium and take advantage of its characteristics, such as over-the-air computations inherent in wireless multiple-access channels (MAC), unreliable transmission and idle nodes in the edge network, limited transmission power, and preserving the privacy of data. To achieve these goals, we propose a novel framework based on Random Linear Coding (RLC) and develop efficient power management and channel usage techniques to manage the trade-offs between power consumption, communication bit-rate and convergence rate of federated learning over wireless MAC. We show that the proposed encoding/decoding results in an unbiased compression of SG, hence guaranteeing the convergence of the training algorithm without requiring error-feedback. Finally, through simulations, we show the superior performance of the proposed method over other existing techniques.more » « less
An official website of the United States government

