skip to main content


Title: The unique methodological challenges of winter limnology
Abstract

Winter is an important season for many limnological processes, which can range from biogeochemical transformations to ecological interactions. Interest in the structure and function of lake ecosystems under ice is on the rise. Although limnologists working at polar latitudes have a long history of winter work, the required knowledge to successfully sample under winter conditions is not widely available and relatively few limnologists receive formal training. In particular, the deployment and operation of equipment in below 0°C temperatures pose considerable logistical and methodological challenges, as do the safety risks of sampling during the ice‐covered period. Here, we consolidate information on winter lake sampling and describe effective methods to measure physical, chemical, and biological variables in and under ice. We describe variation in snow and ice conditions and discuss implications for sampling logistics and safety. We outline commonly encountered methodological challenges and make recommendations for best practices to maximize safety and efficiency when sampling through ice or deploying instruments in ice‐covered lakes. Application of such practices over a broad range of ice‐covered lakes will contribute to a better understanding of the factors that regulate lakes during winter and how winter conditions affect the subsequent ice‐free period.

 
more » « less
NSF-PAR ID:
10462152
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
17
Issue:
1
ISSN:
1541-5856
Page Range / eLocation ID:
p. 42-57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Millions of lakes worldwide are distributed at latitudes or elevations resulting in the formation of lake ice during winter. Lake ice affects the transfer of energy, heat, light, and material between lakes and their surroundings creating an environment dramatically different from open‐water conditions. While this fundamental restructuring leads to distinct gradients in ions, dissolved gases, and nutrients throughout the water column, surprisingly little is known about the resulting effects on ecosystem processes and food webs, highlighting the lack of a general limnological framework that characterizes the structure and function of lakes under a gradient of ice cover. Drawing from the literature and three novel case studies, we present the Lake Ice Continuum Concept (LICC) as a model for understanding how key aspects of the physical, chemical, and ecological structure and function of lakes vary along a continuum of winter climate conditions mediated by ice and snow cover. We examine key differences in energy, redox, and ecological community structure and describe how they vary in response to shifts in physical mixing dynamics and light availability for lakes with ice and snow cover, lakes with clear ice alone, and lakes lacking winter ice altogether. Global change is driving ice covered lakes toward not only warmer annual average temperatures but also reduced, intermittent or no ice cover. The LICC highlights the wide range of responses of lakes to ongoing climate‐driven changes in ice cover and serves as a reminder of the need to understand the role of winter in the annual aquatic cycle.

     
    more » « less
  2. Abstract

    At broad spatial scales, primary productivity in lakes is known to increase in concert with nutrients, and variables that may disrupt or modify the tight coupling of nutrients and algae are of increasing interest, particularly for those shifting with climate change. Storms may disrupt algae–nutrient relationships, but the expected effects differ between winter and summer seasons, particularly for seasonally ice‐covered lakes. In winter, storms can dramatically change the under‐ice light environment, creating light limitation that disrupts algae–nutrient relationships. Further, storms can bring both snow that blocks light and also wind that blows snow off of ice. In open water conditions, storms may promote turbulence and external nutrient loading. Here, we test the hypotheses that winter and summer storms differentially affect algae–nutrient relationships across 84 seasonally ice‐covered lakes included in the Ecology Under Lake Ice dataset. While nutrients explained most of the variation in chlorophyll across these lakes, we found that secondary drivers differed between seasons. Under‐ice chlorophyll was higher under a variety of precipitation and wind conditions that tend to promote snow‐free clear ice, highlighting the importance of light as a limiting factor for algal growth during winter. In summer, higher water temperatures and storms corresponded with higher chlorophyll. Our study suggests that examining ice‐covered lakes in a gradient from the perennial ice cover of the poles to the intermittent ice cover of lower latitudes would yield key information on the shifts in light and nutrient limitation that control algal biomass.

     
    more » « less
  3. Parameters characterizing the physical limnology of the eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, bog lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra and Fish) are measured at one station in the deepest part of each lake at 0.25-m to 1-m depth intervals depending on the lake. Measured parameters in the data set include water temperature, vertical penetration of photosynthetically active radiation (PAR), dissolved oxygen, as well as the derived parameter percent oxygen saturation. Sampling Frequency: fortnightly during ice-free season - every 6 weeks during ice-covered season for the northern lakes. The southern lakes are similar except that sampling occurs monthly during the fall and typically only once during the winter (depending on ice conditions). Number of sites: 11 Please consult NTL's website for information on experimental lake manipulations and the DNR's website for management activities 
    more » « less
  4. Abstract

    In limnological studies of temperate lakes, most studies of carbon dioxide (CO2) and methane (CH4) emissions have focused on summer measurements of gas fluxes despite the importance of shoulder seasons to annual emissions. This is especially pertinent to dimictic, small lakes that maintain anoxic conditions and turnover quickly in the spring and fall. We examined CO2and CH4dynamics from January to October 2020 in a small humic lake in northern Wisconsin, United States through a combination of discrete sampling and high frequency buoy and eddy covariance data collection. Eddy covariance flux towers were installed on buoys at the center of the lake while it was still frozen to continually measure CO2and CH4across seasons. Despite evidence for only partial turnover during the spring, there was still a notable 19‐day pulse of CH4emissions after lake ice melted with an average daytime flux rate of 8–30 nmol CH4m−2s−1. Our estimate of CH4emissions during the spring pulse was 16 mmol CH4m−2compared to 22 mmol CH4m−2during the stratified period from June to August. We did not observe a linear accumulation of gases under‐ice in our sampling period during the late winter, suggesting the complexity of this dynamic period and the emphasis for direct measurements throughout the ice‐covered period. The results of our study help to better understand the magnitude and timing of greenhouse gas emissions in a region expected to experience warmer winters with decreased ice duration.

     
    more » « less
  5. Abstract

    Water movement in ice‐covered lakes is known to be driven by wind, sediment heat flux, solar radiation, saline density flows, and advective stream discharge. In large ice‐covered lakes, wind‐induced oscillations have been found to play a major role in horizontal flows. Here, we report recurrent, wind‐driven, barotropic seiches in a small lake with a thick (~4 m) permanent ice‐cover. Between 2010 and 2016, we recorded 10.5‐ to 13‐min oscillations of the hydrostatic water level in Lake Hoare, McMurdo Dry Valleys, East Antarctica, using pressure transducers moored to the lake bottom and suspended from the ice cover. Theoretical calculations showed a barotropic seiche should have a period of 12.6 min. Barotropic seiches were most frequent during high wind events (> 5 m s−1) in winter months (February–November). The period increased during summer months (December–January) when fast ice thinned and melted along the shoreline.

     
    more » « less