skip to main content


Title: cis -Regulatory Elements in Plant Development, Adaptation, and Evolution
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.  more » « less
Award ID(s):
1733606
NSF-PAR ID:
10462359
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Review of Plant Biology
Volume:
74
Issue:
1
ISSN:
1543-5008
Page Range / eLocation ID:
111 to 137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Cis‐regulatory elements (CREs) are important sequences for gene expression and for plant biological processes such as development, evolution, domestication, and stress response. However, studying CREs in plant genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our understanding of how plant cell types acquire and maintain their identities and respond to the environment via CRE usage. Advances in single‐cell epigenomics have revolutionized the field of identifying cell‐type‐specific CREs. These new technologies have the potential to significantly advance our understanding of plant CRE biology, and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are significant biological and computational challenges associated with analyzing single‐cell epigenomic datasets. In this review, we discuss the historical and foundational underpinnings of plant single‐cell research, challenges, and common pitfalls in the analysis of plant single‐cell epigenomic data, and highlight biological challenges unique to plants. Additionally, we discuss how the application of single‐cell epigenomic data in various contexts stands to transform our understanding of the importance of CREs in plant genomes.

     
    more » « less
  2. SUMMARY

    Gene expression is controlled and regulated by interactions betweencis‐regulatory DNA elements (CREs) and regulatory proteins. Enhancers are one of the most important classes of CREs in eukaryotes. Eukaryotic genes, especially those related to development or responses to environmental cues, are often regulated by multiple enhancers in different tissues and/or at different developmental stages. Remarkably, little is known about the molecular mechanisms by which enhancers regulate gene expression in plants. We identified a distal enhancer,CREβ, which regulates the expression ofAtDGK7, which encodes a diacylglycerol kinase in Arabidopsis. We developed a transgenic line containing the luciferase reporter gene (LUC) driven byCREβfused with a minimal cauliflower mosaic virus (CaMV) 35S promoter. TheCREβenhancer was shown to play a role in the response to osmotic pressure of theLUCreporter gene. A forward genetic screen pipeline based on the transgenic line was established to generate mutations associated with altered expression of theLUCreporter gene. We identified a suite of mutants with variableLUCexpression levels as well as different segregation patterns of the mutations in populations. We demonstrate that this pipeline will allow us to identifytrans‐regulatory factors associated withCREβfunction as well as those acting in the regulation of the endogenousAtDGK7gene.

     
    more » « less
  3. Abstract The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement. 
    more » « less
  4. Abstract

    Endogenously-encoded microRNAs (miRNAs) are a class of small regulatory RNAs that modulate gene expression at the post-transcriptional level. In plants, miRNAs have increasingly been identified by experiments based on next-generation sequencing (NGS). However, promoter organization is currently unknown for most plant miRNAs, which are transcribed by RNA polymerase II. This deficiency prevents a comprehensive understanding of miRNA-mediated gene networks. In this study, by analyzing full-length cDNA sequences related to miRNAs, we mapped transcription start sites (TSSs) for 62 and 55 miRNAs in Arabidopsis and rice, respectively. The average free energy (AFE) profiles in the vicinity of TSSs were studied for both species. By employing position weight matrices (PWM) for 99 plant cis-elements, we discovered that three cis-elements were over-represented in the miRNA promoters of both species, while four and ten cis-elements were over-represented in Arabidopsis only and in rice only. Thus, comparison of miRNA promoters between Arabidopsis and rice provides a new perspective for studying miRNA regulation in plants.

     
    more » « less
  5. Studies of regulatory variation in yeast -- at the level of new mutations, polymorphisms within a species, and divergence between species -- have provided great insight into the molecular and evolutionary processes responsible for the evolution of gene expression in eukaryotes. The increasing ease with which yeast genomes can be manipulated and expression quantified in a high-throughput manner has recently accelerated mechanistic studies of cis- and trans-regulatory variation at multiple evolutionary timescales. These studies have, for example, identified differences in the properties of cis- and trans-acting mutations that affect their evolutionary fate, experimentally characterized the molecular mechanisms through which cis- and trans-regulatory variants act, and illustrated how regulatory networks can diverge between species with or without changes in gene expression. 
    more » « less