SUMMARY Cis‐regulatory elements (CREs) are important sequences for gene expression and for plant biological processes such as development, evolution, domestication, and stress response. However, studying CREs in plant genomes has been challenging. The totipotent nature of plant cells, coupled with the inability to maintain plant cell types in culture and the inherent technical challenges posed by the cell wall has limited our understanding of how plant cell types acquire and maintain their identities and respond to the environment via CRE usage. Advances in single‐cell epigenomics have revolutionized the field of identifying cell‐type‐specific CREs. These new technologies have the potential to significantly advance our understanding of plant CRE biology, and shed light on how the regulatory genome gives rise to diverse plant phenomena. However, there are significant biological and computational challenges associated with analyzing single‐cell epigenomic datasets. In this review, we discuss the historical and foundational underpinnings of plant single‐cell research, challenges, and common pitfalls in the analysis of plant single‐cell epigenomic data, and highlight biological challenges unique to plants. Additionally, we discuss how the application of single‐cell epigenomic data in various contexts stands to transform our understanding of the importance of CREs in plant genomes.
more »
« less
cis -Regulatory Elements in Plant Development, Adaptation, and Evolution
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.
more »
« less
- Award ID(s):
- 1733606
- PAR ID:
- 10462359
- Date Published:
- Journal Name:
- Annual Review of Plant Biology
- Volume:
- 74
- Issue:
- 1
- ISSN:
- 1543-5008
- Page Range / eLocation ID:
- 111 to 137
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.more » « less
-
Abstract Organisms regulate gene expression in response to environmental cues, a process known as plasticity, to adjust to changing environments. Research into natural variation and the evolution of plasticity frequently studies cis-regulatory elements with theory suggesting they are more important evolutionarily than trans-regulatory elements. Genome-wide association (GWA) studies have supported this idea, observing a predominance of cis-loci affecting plasticity. However, studies in structured populations provide a contrasting image, raising questions about the genetic architecture of natural variation in plasticity. To circumvent potential statistical difficulties present in GWA studies, we mapped loci underlying transcriptomic plasticity in response to salicylic acid (SA) using recombinant inbred lines generated from 2 random Arabidopsis thaliana accessions. We detected extensive transgressive segregation in the SA response, suggesting that plasticity to salicylate in Arabidopsis is polygenic. Most loci (>75%) underlying this variation act in trans, especially for loci influencing plasticity. Trans-acting loci were enriched in genome hotspots, with predominantly small-effect sizes distributed across many genes. This could potentially explain their under-discovery in GWA studies. This work reveals a potentially important role for trans-acting loci in plastic expression responses, with implications for understanding plant adaptation to different environments.more » « less
-
Studies of regulatory variation in yeast -- at the level of new mutations, polymorphisms within a species, and divergence between species -- have provided great insight into the molecular and evolutionary processes responsible for the evolution of gene expression in eukaryotes. The increasing ease with which yeast genomes can be manipulated and expression quantified in a high-throughput manner has recently accelerated mechanistic studies of cis- and trans-regulatory variation at multiple evolutionary timescales. These studies have, for example, identified differences in the properties of cis- and trans-acting mutations that affect their evolutionary fate, experimentally characterized the molecular mechanisms through which cis- and trans-regulatory variants act, and illustrated how regulatory networks can diverge between species with or without changes in gene expression.more » « less
-
null (Ed.)Abstract Plants respond to their environment by dynamically modulating gene expression. A powerful approach for understanding how these responses are regulated is to integrate information about cis-regulatory elements (CREs) into models called cis-regulatory codes. Transcriptional response to combined stress is typically not the sum of the responses to the individual stresses. However, cis-regulatory codes underlying combined stress response have not been established. Here we modeled transcriptional response to single and combined heat and drought stress in Arabidopsis thaliana. We grouped genes by their pattern of response (independent, antagonistic and synergistic) and trained machine learning models to predict their response using putative CREs (pCREs) as features (median F-measure = 0.64). We then developed a deep learning approach to integrate additional omics information (sequence conservation, chromatin accessibility and histone modification) into our models, improving performance by 6.2%. While pCREs important for predicting independent and antagonistic responses tended to resemble binding motifs of transcription factors associated with heat and/or drought stress, important synergistic pCREs resembled binding motifs of transcription factors not known to be associated with stress. These findings demonstrate how in silico approaches can improve our understanding of the complex codes regulating response to combined stress and help us identify prime targets for future characterization.more » « less
An official website of the United States government

