We propose a method for constructing generative models of 3D objects from a single 3D mesh and improving them through unsupervised low-shot learning from 2D images. Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes. Whereas previous approaches have typically built 3D morphable models from multiple high-quality 3D scans through principal component analysis, we build 3D morphable models from a single scan or template. As we demonstrate in the face domain, these models can be used to infer 3D reconstructions from 2D data (inverse graphics) or 3D data (registration). Specifically, we show that our approach can be used to perform face recognition using only a single 3D template (one scan total, not one per person). We extend our model to a preliminary unsupervised learning framework that enables the learning of the distribution of 3D faces using one 3D template and a small number of 2D images. Our approach is motivated as a potential model for the origins of face perception in human infants, who appear to start with an innate face template and subsequently develop a flexible system for perceiving the 3D structure of any novel face from experience with only 2D images of a relatively small number of familiar faces.
more » « less- PAR ID:
- 10462400
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- International Journal of Computer Vision
- Volume:
- 132
- Issue:
- 2
- ISSN:
- 0920-5691
- Format(s):
- Medium: X Size: p. 555-580
- Size(s):
- p. 555-580
- Sponsoring Org:
- National Science Foundation
More Like this
-
Reconstructing 3D faces with facial geometry from single images has allowed for major advances in animation, generative models, and virtual reality. However, this ability to represent faces with their 3D features is not as fully explored by the facial expression inference (FEI) community. This study therefore aims to investigate the impacts of integrating such 3D representations into the FEI task, specifically for facial expression classification and face-based valence-arousal (VA) estimation. To accomplish this, we first assess the performance of two 3D face representations (both based on the 3D morphable model, FLAME) for the FEI tasks. We further explore two fusion architectures, intermediate fusion and late fusion, for integrating the 3D face representations with existing 2D inference frameworks. To evaluate our proposed architecture, we extract the corresponding 3D representations and perform extensive tests on the AffectNet and RAF-DB datasets. Our experimental results demonstrate that our proposed method outperforms the state-of-the-art AffectNet VA estimation and RAF-DB classification tasks. Moreover, our method can act as a complement to other existing methods to boost performance in many emotion inference tasks.more » « less
-
This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT).more » « less
-
Recovering 3D face models from in-the-wild face images has numerous potential applications. However, properly modeling complex lighting effects in reality, including specular lighting, shadows, and occlusions, from a single in-the-wild face image is still considered as a widely open research challenge. In this paper, we propose a convolutional neural network based framework to regress the face model from a single image in the wild. The outputted face model includes dense 3D shape, head pose, expression, diffuse albedo, specular albedo, and the corresponding lighting conditions. Our approach uses novel hybrid loss functions to disentangle face shape identities, expressions, poses, albedos, and lighting. Besides a carefully designed ablation study, we also conduct direct comparison experiments to show that our method can outperform state-of-art methods both quantitatively and qualitatively.more » « less
-
Denoising diffusion models have emerged as a powerful class of generative models capable of capturing the distributions of complex, real-world signals. However, current approaches can only model distributions for which training samples are directly accessible, which is not the case in many real-world tasks. In inverse graphics, for instance, we seek to sample from a distribution over 3D scenes consistent with an image but do not have access to ground-truth 3D scenes, only 2D images. We present a new class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never observed directly, but instead are only measured through a known differentiable forward model that generates partial observations of the unknown signal. To accomplish this, we directly integrate the forward model into the denoising process. At test time, our approach enables us to sample from the distribution over underlying signals consistent with some partial observation. We demonstrate the efficacy of our approach on three challenging computer vision tasks. For instance, in inverse graphics, we demonstrate that our model enables us to directly sample from the distribution 3D scenes consistent with a single 2D input image.more » « less
-
Denoising diffusion models have emerged as a powerful class of generative models capable of capturing the distributions of complex, real-world signals. However, current approaches can only model distributions for which training samples are directly accessible, which is not the case in many real-world tasks. In inverse graphics, for instance, we seek to sample from a distribution over 3D scenes consistent with an image but do not have access to ground-truth 3D scenes, only 2D images. We present a new class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never observed directly, but instead are only measured through a known differentiable forward model that generates partial observations of the unknown signal. To accomplish this, we directly integrate the forward model into the denoising process. At test time, our approach enables us to sample from the distribution over underlying signals consistent with some partial observation. We demonstrate the efficacy of our approach on three challenging computer vision tasks. For instance, in inverse graphics, we demonstrate that our model enables us to directly sample from the distribution 3D scenes consistent with a single 2D input image.more » « less