skip to main content


This content will become publicly available on September 13, 2024

Title: Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid
Abstract

Most insects harbour influential, yet non‐essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi‐species nature raises intriguing questions on roles for symbiont–symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species‐defined symbiont community structure across US populations of the pea aphid,Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co‐infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co‐infection trends. To test whether within‐host metabolic interactions predict common versus rare strain‐defined communities, we leveraged the high relatedness of our dominant, community‐defined symbiont strains vs. 12 pea aphid‐derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts—Serratia symbioticaandRickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligateBuchnerasymbiont genomes,SerratiaandRickettsiellaemerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi‐party mutualism within their nutrient‐limited, phloem‐feeding hosts. Recent, complementary gene inactivation, within the biotin pathways ofSerratiaandRickettsiella, raises further questions on the origins of mutualisms and host–symbiont interdependencies.

 
more » « less
Award ID(s):
1754302
NSF-PAR ID:
10462430
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
ISSN:
1010-061X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Animal‐associated microbiomes are often comprised of structured, multispecies communities, with particular microbes showing trends of co‐occurrence or exclusion. Such structure suggests variable community stability, or variable costs and benefits—possibilities with implications for symbiont‐driven host adaptation. In this study, we performed systematic screening for maternally transmitted, facultative endosymbionts of the pea aphid,Acyrthosiphon pisum. Sampling across six locales, with up to 5 years of collection in each, netted significant and consistent trends of community structure. Co‐infections betweenSerratia symbioticaandRickettsiella viridiswere more common than expected, whileRickettsiaand X‐type symbionts colonized aphids withHamiltonella defensamore often than expected.Spiroplasmaco‐infected with other endosymbionts quite rarely, showing tendencies to colonize as a single species monoculture. Field estimates of maternal transmission rates help to explain our findings: whileSerratiaandRickettsiellaimproved each other's transmission,Spiroplasmareduced transmission rates of co‐infecting endosymbionts. In summary, our findings show that North American pea aphids harbour recurring combinations of facultative endosymbionts. Common symbiont partners play distinct roles in pea aphid biology, suggesting the creation of “generalist” aphids receiving symbiont‐based defence against multiple ecological stressors. Multimodal selection, at the host level, may thus partially explain our results. But more conclusively, our findings show that within‐host microbe interactions, and their resulting impacts on transmission rates, are an important determinant of community structure. Widespread distributions of heritable symbionts across plants and invertebrates hint at the far‐reaching implications for these findings, and our work further shows the benefits of symbiosis research within a natural context.

     
    more » « less
  2. Abstract Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter and nutritional co-obligate symbiont. Here we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a co-infection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggest that metabolic complementarity is not the basis for co-infection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event. 
    more » « less
  3. Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects’ adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont—Hamiltonella defensa—studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such “hitchhiking” effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont—Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases—including the one described above for Hamiltonella—our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for “passenger” symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects. 
    more » « less
  4. Abstract

    Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain‐level variation in genome content and architecture, and often correlate with variability in symbiont‐mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain‐level variation in the type of toxin‐encoding bacteriophages (APSEs) carried by the bacteriumHamiltonella defensacorrelates with strength of defence against parasitoids. However, co‐inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates ofH. defensathat were nearly identical except for APSE type. When holdingH. defensagenotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within someH. defensaclades providing a mechanism for rapid evolution in anti‐parasitoid defences. Strain variation inH. defensaalso correlates with the presence of a second symbiontFukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin‐containing plasmids unique to co‐infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.

     
    more » « less
  5. Abstract

    Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiontHamiltonella defensaconfers protection against the parasitoid,Aphidius ervi, andRegiella insecticolaprotects against aphid‐specific fungal pathogens, includingPandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virusApisum virus(APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont‐free aphids and these costs were elevated in aphids also housingHdefensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids withRinsecticola. To our knowledge,Rinsecticolais the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of eitherRinsecticolaorHdefensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont‐mediated interactions.

     
    more » « less