A hypervalent (HV) iodine(III)‐containing crosslinker, (diacryloyloxyiodo)benzene, is synthesized and its crystal structure is reported. Highly branched polymers with hypervalent iodine(III) groups as the building blocks present at the branching points are synthesized by copolymerization of
Heterocyclic hypervalent (HV) iodine(III) compounds with ICl bonds and various substituents at the N atom are synthesized and found to be very efficient chain transfer agents in the polymerization of styrene with transfer coefficients exceeding that of CCl4by 2–3 orders of magnitude, depending on the structure. The chain transfer rate coefficients are also determined. Due to the presence of thermally labile HV bonds, the compounds degrade homolytically upon heating and can initiate radical polymerization. For instance, 1‐chloro‐2‐hexyl‐1,2‐benziodazol‐3(2H)‐one, is used in the polymerization of styrene, which yields low molecular weight polymers with alkyl chloride groups at the α‐ (initiation) and the ω‐chain ends (transfer). Chain‐end functionalization reactions with azide and chain extension under low‐catalyst‐concentration atom transfer radical polymerization (ATRP) conditions of the prepared telechelic polymers are carried out. The same initiator/chain transfer agent is successfully employed in the synthesis of highly branched polymers with multiple alkyl chloride‐type chain ends when added to mixtures of styrene and 1,4‐divinylbenzene containing 10–80 mol% of the divinyl crosslinker, or even pure crosslinker. In all cases, soluble hyperbranched polymers are obtained up to moderate monomer conversions. The effects of crosslinker and HV iodine(III) compound concentrations on the polymerization outcome are studied systematically.
more » « less- PAR ID:
- 10462456
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- Volume:
- 220
- Issue:
- 4
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract tert ‐butyl acrylate and the diacrylate crosslinker (up to 12 mol% vs the monovinyl monomer), under reversible deactivation radical polymerization (iodine transfer polymerization) conditions, which are employed to ensure that the incorporation of the crosslinker into the polymer chains is slow and gradual, that is, to limit the average number of pendant double bonds per chain and delay gelation. The branched polymers with (diacyloxyiodo)benzene‐type linkers are responsive and react with monocarboxylic acids, for example, acetic acid, which participate in ligand‐exchange reactions with the HV iodine(III) centers, and with reducing agents, for example, tributylphosphine, which reduce iodine(III) to iodine(I); both reactions lead to polymer degradation with the formation of random linear copolymers oftert ‐butyl acrylate and acrylic acid. -
ABSTRACT Hypervalent iodine(III) compounds with tetrazole ligands C6H5I(N4CR)2(R CH3, C6H5, 4‐CH3C6H4) reacted, in the presence of elemental iodine, with the double bonds in cis‐1,4‐polyisoprene (polyIP) to afford iodo‐tetrazolylated polymers. The alkyl‐iodide groups in the products of the polyIP functionalization were utilized as macro chain‐transfer agents for the iodine‐transfer polymerization of methyl methacrylate, which yielded brush polymers with well‐defined poly(methyl methacrylate) side chains. In addition, the iodo‐tetrazolylated polymers were reacted with NaN3in DMF at room temperature, and it was noticed that, in addition to nucleophilic substitution, elimination reactions took place. However, the presence of azide groups was taken advantage of and successful click chemistry‐type of grafting‐onto reactions were carried out with alkyne‐capped poly(ethylene oxide) in the presence of CuBr and
N ,N ,N′ ,N″ ,N″ ‐pentamethyldiethylenetriamine. The thermal decomposition of both the iodo‐tetrazolylated and the azido‐tetrazolylated polymers was exothermic, especially for the latter materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020 ,58 , 172–180 -
Abstract Pressure‐sensitive‐adhesives (PSAs) are pervasive in electronic, automobile, packaging, and biomedical applications due to their ability to stick to numerous surfaces without undergoing chemical reactions. These materials are typically synthesized by the free radical copolymerization of alkyl acrylates and acrylic acid, leading to an ensemble of polymer chains with varying composition and molecular weight. Here, reversible addition−fragmentation chain‐transfer (RAFT) copolymerizations in a semi‐batch reactor are used to tailor the molecular architecture and bulk mechanical properties of acrylic copolymers. In the absence of cross‐links, the localization of acrylic acid toward the chain ends leads to microphase separation, creep resistance, and enhanced tack. However, in the presence of Al(acac)3crosslinker, the creep resistance remains unchanged and mostly the large‐strain mechanical properties are affected. This behavior is attributed to microphase separation, but also to a change in the energy required to break physical associations, and untangle and elongate associative polymers to large deformations.
-
null (Ed.)The stringent control over the polymerization of less activated monomers remains one major challenge for Reversible Deactivation Radical Polymerizations (RDRP), including Atom Transfer Radical Polymerization (ATRP). Electrochemically mediated ATRP ( e ATRP) of a gaseous monomer, vinyl chloride (VC), was successfully achieved for the first time using a stainless-steel 304 (SS304) electrochemical reactor equipped with a simplified electrochemical setup. Controlled polymerizations were confirmed by the good agreement between theoretical and measured molecular weights, as well as the relatively narrow molecular weight distributions. Preservation of chain-end fidelity was verified by chain extension experiments, yielding poly(vinyl chloride) (PVC) homopolymers, block and statistical copolymers. The possibility of synthesizing PVC by e ATRP is a promising alternative to afford cleaner (co)polymers, with low catalyst concentration. The metal body of the reactor was also successfully used as a cathode. The setup proposed in this contribution opens an avenue for the polymerization of other gaseous monomers.more » « less
-
Abstract Traditional mechanochemically controlled reversible‐deactivation radical polymerization (RDRP) utilizes ultrasound or ball milling to regenerate activators, which induce side reactions because of the high‐energy and high‐frequency stimuli. Here, we propose a facile approach for tribochemically controlled atom transfer radical polymerization (tribo‐ATRP) that relies on contact‐electro‐catalysis (CEC) between titanium oxide (TiO2) particles and CuBr2/tris(2‐pyridylmethylamine (TPMA), without any high‐energy input. Under the friction induced by stirring, the TiO2particles are electrified, continuously reducing CuBr2/TPMA into CuBr/TPMA, thereby conversing alkyl halides into active radicals to start ATRP. In addition, the effect of friction on the reaction was elucidated by theoretical simulation. The results indicated that increasing the frequency could reduce the energy barrier for the electron transfer from TiO2particles to CuBr2/TPMA. In this study, the design of tribo‐ATRP was successfully achieved, enabling CEC (ca. 10 Hz) access to a variety of polymers with predetermined molecular weights, low dispersity, and high chain‐end fidelity.