skip to main content


Title: Construction of integrated microRNA and mRNA immune cell signatures to predict survival of patients with breast and ovarian cancer
Abstract

In the tumor microenvironment, immune cells have emerged as key regulators of cancer progression. While much work has focused on characterizing tumor‐related immune cells through gene expression profiling, microRNAs (miRNAs) have also been reported to regulate immune cells in the tumor microenvironment. Using regression‐based computational methods, we have constructed for the first time, immune cell signatures based on miRNA expression from The Cancer Genome Atlas breast and ovarian cancer datasets. Combined with existing mRNA immune cell signatures, the integrated mRNA‐miRNA leukocyte signatures are better able to delineate prognostic immune cell subsets within both cancers compared to the mRNA or miRNA signatures alone. Moreover, using the miRNA signatures, the anti‐inflammatory M2 macrophages emerged as the most significantly prognostic cell type in the breast cancer data (HR [hazard ratio]: 12.9; CI [confidence interval]: 3.09‐52.9;P = 4.22E−4), whereas the pro‐inflammatory M1 macrophages emerged as the most prognostic immune cell type in the ovarian cancer data (HR: 0.2; CI: 0.04‐0.56,P = 5.02E−3). These results suggest that our integrated miRNA and mRNA leukocyte signatures could be used to better delineate prognostic leukocyte subsets within cancers, whereas continued investigation may further support the regulatory relationships predicted between the miRNAs and immune cells found within our signature matrices.

 
more » « less
NSF-PAR ID:
10462461
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Genes, Chromosomes and Cancer
Volume:
58
Issue:
1
ISSN:
1045-2257
Format(s):
Medium: X Size: p. 34-42
Size(s):
p. 34-42
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Evolving knowledge about the tumor–immune microenvironment (TIME) is driving innovation in designing novel therapies against hard‐to‐treat breast cancer. Targeting the immune components of TIME has emerged as a promising approach for cancer therapy. While recent immunotherapies aim at restoring antitumor immunity, counteracting tumor escape remains challenging. Hence there is a pressing need to better understand the complex tumor–immune crosstalk within TIME. Considering this imperative, this study aims at investigating the crosstalk between the two abundant immune cell populations within the breast TIME—macrophages and T cells, in driving tumor progression using an organotypic 3D in vitro tumor‐on‐a‐chip (TOC) model. The TOC features distinct yet interconnected organotypic tumor and stromal entities. This triculture platform mimics the complex TIME, embedding the two immune populations in a suitable 3D matrix. Analysis of invasion, morphometric measurements, and flow cytometry results underscores the substantial contribution of macrophages to tumor progression, while the presence of T cells is associated with a deceleration in the migratory behavior of both cancer cells and macrophages. Furthermore, cytokine analyses reveal significant upregulation of leptin and RANTES (regulated on activation, normal T Cell expressed and secreted) in triculture. Overall, this study highlights the complexity of TIME and the critical role of immune cells in cancer progression.

     
    more » « less
  2. The role of the tumor microenvironment (TME) in immuno‐oncology has driven demand for technologies that deliverin situ, or spatial, molecular information. Compartmentalized heterogeneity that traditional methods miss is becoming key to predicting both acquired drug resistance to targeted therapies and patient response to immunotherapy. Here, we describe a novel method for assay‐agnostic spatial profiling and demonstrate its ability to detect immune microenvironment signatures in breast cancer patients that are unresolved by the immunohistochemical (IHC) assessment of programmed cell death ligand‐1 (PD‐L1) on immune cells, which represents the only FDA microenvironment‐based companion diagnostic test that has been approved for triple‐negative breast cancer (TNBC). Two distinct physiological states were found that are uncorrelated to tumor mutational burden (TMB), microsatellite instability (MSI),PD‐L1expression, and intrinsic cancer subtypes.

     
    more » « less
  3. null (Ed.)
    The advent of immune checkpoint therapy for metastatic skin cancer has greatly improved patient survival. However, most skin cancer patients are refractory to checkpoint therapy, and furthermore, the intra-immune cell signaling driving response to checkpoint therapy remains uncharacterized. When comparing the immune transcriptome in the tumor microenvironment of melanoma and basal cell carcinoma (BCC), we found that the presence of memory B cells and macrophages negatively correlate in both cancers when stratifying patients by their response, with memory B cells more present in responders. Moreover, inhibitory immune signaling mostly decreases in melanoma responders and increases in BCC responders. We further explored the relationships between macrophages, B cells and response to checkpoint therapy by developing a stochastic differential equation model which qualitatively agrees with the data analysis. Our model predicts BCC to be more refractory to checkpoint therapy than melanoma and predicts the best qualitative ratio of memory B cells and macrophages for successful treatment. 
    more » « less
  4. Abstract

    Breast cancer accounts for the highest cancer cases globally, with 12% of occurrences progressing to metastatic breast cancer with a low survival rate and limited effective early intervention strategies augmented by late diagnosis. Moreover, a low concentration of prognostic and predictive markers hinders disease monitoring. Circulating and exosomal microRNAs (miRNAs) have recently shown a considerable interplay in breast cancer, standing out as effective diagnostic and prognostic markers. The primary functions are as gene regulatory agents at the genetic and epigenetic levels. An array of dysregulated miRNAs stimulates cancer‐promoting mechanisms, activating oncogenes and controlling tumor‐suppressing genes and mechanisms. Exosomes are vastly studied extracellular vesicles, carrying, and transporting cargo, including noncoding RNAs with premier roles in oncogenesis. Translocation of miRNAs from the circulation to exosomes, with RNA‐binding proteins in stress‐induced conditions, has shown significant cooperation in function to promote breast cancer. This review examines cellular and exosomal miRNA biogenesis and loading, the clinical implications of their dysregulation, their function in diagnosis, prognosis, and prediction of breast cancer, and in regulating cancer signaling pathways. The influence of cellular and exosomal miRNAs presents clinical significance on breast cancer diagnosis, subtyping, staging, prediction, and disease monitoring during treatment, hence a potent marker for breast cancer.

     
    more » « less
  5. Abstract BACKGROUND

    Numerous studies have demonstrated the existence of stable regulatory RNAs, microRNAs (miRNAs), in the circulation and have shown that the spectrum of these extracellular miRNAs is affected by various pathologic conditions including cancers.

    CONTENT

    Circulating miRNAs have been the focus of numerous cancer biomarker discovery efforts over the past few years; however, a considerable number of these studies have yielded inconsistent and irreproducible findings. Here, we have summarized and compared the results of studies covering 8 different cancer types to address key questions, including the possibility of using circulating miRNA to detect cancers and what factors may affect miRNA signatures. Although identifying circulating miRNA signatures to detect specific types of early stage cancers can be challenging, study results suggest that it may be possible to use miRNAs to detect cancers in general.

    SUMMARY

    Circulating miRNA is a rich source for potential disease biomarkers; however, factors, both intrinsic and extrinsic, that may affect measurement of circulating miRNA have not been fully characterized. Better understanding of intra- and intercellular miRNA trafficking and the fundamental biology of cancer cell–derived lipid vesicles may facilitate the development of circulating miRNA-based biomarkers for cancer detection and classification.

     
    more » « less