skip to main content


Title: Functional and developmental influences on intraspecific variation in catarrhine vertebrae
Abstract Objectives

We tested whether patterns of intraspecific variation in catarrhine vertebral shape are consistent with developmental or functional predictions. Intraspecific variation was compared across column regions, morphological features, and species. Transitional regions and later ossifying morphological features were predicted to exhibit increased variation. The lumbosacral region, biomechanically important morphological features, and species with high locomotor demand and/or dedicated pronogrady were predicted to exhibit decreased variation.

Materials and Methods

We used a modified Levene's test to compare intraspecific variation in dimensions of the neural canal, vertebral bodies, and spinous and transverse processes in lower thoracic to proximal sacral vertebrae. The sample included all hominoid genera and one cercopithecoid (Chlorocebus).

Results

We found little difference in variation across regions of the vertebral column. In hominoids, vertebral body dimensions were the least variable, neural canal dimensions the most variable, with spinous and transverse processes generally intermediate. Among species, there was a general though not always significant pattern forChlorocebusto exhibit the least variation, followed byHomoorHylobates.

Discussion

Patterns of variation across morphological features may reflect the complex interaction of functional constraints, developmental timing, and/or variable biomechanical forces.Pongo's elevated variation in spinous process length suggests a release from functional constraint, consistent with its suspensory locomotion and reduced spinous processes. Interspecific differences in vertebral variation based on locomotor demand or posture are generally consistent with patterns previously reported for vertebral formula and other aspects of morphology. Future research would benefit from an expanded taxonomic sample and more detailed analyses of vertebral modularity and developmental timing.

 
more » « less
NSF-PAR ID:
10462471
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
168
Issue:
1
ISSN:
0002-9483
Page Range / eLocation ID:
p. 131-144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    The regionalization of the mammalian spinal column is an important evolutionary, developmental, and functional hallmark of the clade. Vertebral column regions are usually defined using transitions in external bone morphology, such as the presence of transverse foraminae or rib facets, or measurements of vertebral shape. Yet the internal structure of vertebrae, specifically the trabecular (spongy) bone, plays an important role in vertebral function, and is subject to the same variety of selective, functional, and developmental influences as external bone morphology. Here, we investigated regionalization of external and trabecular bone morphology in the vertebral column of a group of shrews (family Soricidae). The primary goals of this study were to: (1) determine if vertebral trabecular bone morphology is regionalized in large shrews, and if so, in what configuration relative to external morphology; (2) assess correlations between trabecular bone regionalization and functional or developmental influences; and (3) determine if external and trabecular bone regionalization patterns provide clues about the function of the highly modified spinal column of the hero shrew Scutisorex. Trabecular bone is regionalized along the soricid vertebral column, but the configuration of trabecular bone regions does not match that of the external vertebral morphology, and is less consistent across individuals and species. The cervical region has the most distinct and consistent trabecular bone morphology, with dense trabeculae indicative of the ability to withstand forces in a variety of directions. Scutisorex exhibits an additional external morphology region compared to unmodified shrews, but this region does not correspond to a change in trabecular architecture. Although trabecular bone architecture is regionalized along the soricid vertebral column, and this regionalization is potentially related to bone functional adaptation, there are likely aspects of vertebral functional regionalization that are not detectable using trabecular bone morphology. For example, the external morphology of the Scutisorex lumbar spine shows signs of an extra functional region that is not apparent in trabecular bone analyses. It is possible that body size and locomotor mode affect the degree to which function is manifest in trabecular bone, and broader study across mammalian size and ecology is warranted to understand the relationship between trabecular bone morphology and other measures of vertebral function such as intervertebral range of motion.

     
    more » « less
  2. Abstract Objectives

    Vertebral neural canal (VNC) dimensions are considered a reliable indicator of childhood stress. However, no study has characterized variation in VNC size or shape or the impact of extrinsic or intrinsic factors on their range of variation. The present study explores VNC dimensions of subadult samples varying in chronology, population of origin, geography, and socioeconomic backgrounds.

    Materials and Methods

    Antero‐posterior (AP) and transverse (TR) diameters were measured on the tenth thoracic to the fifth lumbar vertebrae of 1404 contemporary individuals aged between birth and 22 years from Colombia (N = 28), France (N = 484), the Netherlands (N = 23), Taiwan (N = 31), and the United States (N = 838), and compared to lumbar diameters of subadults from the Spitalfields collection (N = 84) and the East Smithfield cemetery (N = 65). VNC variation was evaluated with skeletal growth profiles, principal component analyses (PCA), MANOVAs and ANOVAs.

    Results

    AP diameter growth ends during childhood, while TR diameter growth progressively slows before ending in adolescence. The Colombian sample presented the smallest VNC diameters compared to the other contemporary and historic samples. VNC shape (AP/TR ratio) was similar in contemporary samples. MANOVAs and ANOVAs revealed significant differences in VNC size according to country of origin and socio‐economic status, primarily differentiating the Colombian sample.

    Discussion

    The overall consistency in size and shape among groups is remarkable. While physiological stress may contribute to variability in VNC size, intrinsic ontogenetic processes and other individual and environmental factors also influence variability in VNC size.

     
    more » « less
  3. Abstract Objectives

    Recent evidence suggests that the amount of intraspecific variation in semicircular canal morphology may, itself, be evidence for varying levels of selection related to locomotor demands. To determine the extent of this phenomenon across taxa, we expand upon previous work by examining intraspecific variation in canal radii and canal orthogonality in a broad sample of strepsirrhine and platyrrhine primates. Patterns of interspecific variation are re‐examined in light of intraspecific variation to better understand the resolution at which locomotion can be reconstructed from single individuals.

    Materials and Methods

    Data was collected from high‐resolution CT scans of 14 size‐matched, related species. Six of these taxa have existing data on rotational head speeds.

    Results

    The level of intraspecific variation was found to differ in strepsirrhine and in platyrrhine species pairs, with larger ranges of variation generally observed for the slower moving taxon than the faster moving one. Taxa that are classified as relatively agile can to some extent be separated from those who are slower‐moving, but only when comparing similarly sized, closely related species with more extreme forms of locomotion.

    Discussion

    Our findings agree with previous research showing that canal intraspecific variation can fluctuate according to species‐specific locomotor behavior and extends this further by identifying behaviors that may be under unusual selective pressure. It also demonstrates the complexity of interpreting inner ear morphology in the context of broadly applicable locomotor “categories” of the kind commonly used in behavioral studies. We suspect that simplified models predicting vestibular sensitivity may be unable to differentiate behaviors when only a single specimen is available.

     
    more » « less
  4. Abstract Objectives

    Variation in primate masticatory form and function has been extensively researched through both morphological and experimental studies. As a result, symphyseal fusion in different primate clades has been linked to either the recruitment of vertically directed balancing‐side muscle force, the timing and recruitment of transversely directed forces, or both. This study investigates the relationship between jaw muscle activity patterns and morphology in extant primates to make inferences about masticatory function in extinct primates, with implications for understanding the evolution of symphyseal fusion.

    Materials and methods

    Three‐dimensional mandibular landmark data were collected for 31 extant primates and nine fossil anthropoids and subfossil lemur species. Published electromyography (EMG) data were available for nine of the extant primate species. Partial least squares analysis and phylogenetic partial least squares analysis were used to identify relationships between EMG and jaw shape data and evaluate variation in jaw morphology.

    Results

    Primates with partial and complete symphyseal fusion exhibit shape‐function patterns associated with the wishboning motor pattern and loading regime, in contrast to shape‐function patterns of primates with unfused jaws. All fossil primates examined (exceptApidium) exhibit jaw morphologies suggestive of the wishboning motor pattern demonstrated in living anthropoids and indriids.

    Discussion

    Partial fusion inCatopithecus, similar to indriids and some subfossil lemurs, may be sufficient to resist, or transfer, some amounts of transversely directed balancing‐side muscle force at the symphysis, representing a transition to greater reliance on transverse jaw movement during mastication. Furthermore, possible functional convergences in physiological patterns during chewing (i.e.,Archaeolemur) are identified.

     
    more » « less
  5. Abstract Aim

    To investigate the cryptic diversity and diversification timing in the putatively low‐dispersal Amazonian leaf‐litter lizardLoxopholis osvaldoi, and to ask how geography (rivers, isolation by distance, IBD), ecological drivers (isolation by environment, IBE) and historical factors (climatic refugia) explain intraspecific genetic variation.

    Location

    Central Amazonia, Brazil.

    Taxon

    Squamata; Gymnophthalmidae;Loxopholis osvaldoi.

    Methods

    We sequenced two mitochondrial and two nuclear markers in 157 individuals. Phylogeographic structure and the occurrence of independent evolving lineages where explored through phylogenetic and coalescent analyses. A species tree and divergence dates of lineages were inferred with *BEAST, employing multiple DNA substitution rates. The potential genetic impacts of geographical distance among localities, the environment and the position of localities in relation to main rivers were tested by redundancy analysis (RDA).

    Results

    We detected 11 independently evolving and largely divergent intraspecific lineages. Lineage distribution patterns are complex and do not match any conspicuous barrier to gene flow, except for the Amazon River. Most lineages appear to have originated in the lower Miocene and Pliocene, in disagreement with the Pleistocene refuge hypothesis. IBD, IBE and rivers appear to have acted in concert establishing and maintaining genetic structure. However, when controlling for other explanatory variables, IBD explains significantly more variation than rivers, IBE or historical factors.

    Main Conclusions

    Our results strongly suggest thatL.osvaldoiis a species complex. Future taxonomic work should use an integrative approach to explore whether morphological variation is present and congruent with the genetic data. While the use of a sensitive dating analysis allowed us to better describe the diversification history ofL.osvaldoi, the lack of a spatial model of Neogene river dynamics prevents the test of specific, more informative river barrier hypotheses. The data suggest that nonlinear correlation analyses (e.g. RDA) should be preferred to detect factors that affect phylogeographic patterns in the Amazon, instead of linear multiple regressions (e.g. Mantel tests). Given the high level of cryptic diversity detected within this and other Amazonian species, we caution against hypothesis tests based solely on the distribution of nominal taxa, which can provide a rather incomplete view of the processes behind Amazonian diversity.

     
    more » « less