Two tetraarylphosphonium polyelectrolytes having perfluorocyclobutyl units in their backbones have been prepared in which the counteranion is either bromide (
Phosphonium‐containing polyelectrolyte networks (PENs) (
- PAR ID:
- 10462504
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science Part A: Polymer Chemistry
- Volume:
- 57
- Issue:
- 5
- ISSN:
- 0887-624X
- Page Range / eLocation ID:
- p. 598-604
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT PFP· Br) or bis(trifluoromethyl)sulfonimide (PFP· NTf2). These polymers exhibit high thermal stability as assessed by thermogravimetric analysis, with a decomposition temperature of 460 °C forPFP· NTf2. Even after heating at 300 °C for 72 h,PFP· NTf2shows no signs of degradation detectable by nuclear magnetic resonance spectrometry. As is typical for many tetraarylphosphonium species, films of these polymers can be quite resistant to degradation by alkaline solution. Upon alkaline challenge by exposure to 6M NaOH at 65 °C for 24 h, for example, only 16% of the phosphonium centers inPFP ·NTf2are degraded, makingPFP ·NTf2one of the most alkaline‐stable phosphonium polymers to date. Despite having ionic backbones,PFP· Br andPFP· NTf2exhibit very low critical surface energies of 26.1 and 22.9 mJ m−1, respectively. These values are on par with the values for poly(vinylene fluoride) and dimethylsiloxane. Such low surface energy polycations capable of high alkaline stability may find application as components of alkaline fuel cell membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019 , 57, 2267–2272 -
Five new divalent metal coordination polymers containing either 1,3‐adamantanedicarboxylate (adc) or 1,3‐adamantanediacetate (ada) and pillaring dipyridyl ligands were prepared and structurally characterized by single‐crystal X‐ray diffraction. Using the V‐shaped linker 4,4′‐dipyridylamine (dpa), three new phases were isolated. {[Zn2(ada)2(dpa)2]
· 4.5H2O}n (1 ) shows a (4,4) grid topology with embedded octameric water clusters. {[Co(ada)(dpa)(H2O)]· H2O}n (2 ) also manifests a 2D dimensionality, but with an intriguing novel (4)(12)(4.125) looped topology. {[Cd(adc)(H2O)2]· H2O}n (3 ) did not incorporate dpa ligands during self‐assembly, but exhibits an uncommon 3‐connected 83etb network topology. [Co(ada)(ebin)]n (4 ) [ebin = ethanediaminebis(nicotinamide)] possesses a (3,6) triangular net based on {Co2(OCO)2} dimeric units. {[Cd(adc)(ebin)]· 2H2O}n (5 ) also shows dimeric units, although linked into a decorated (4,4) grid topology. Magnetic susceptibility studies of compound4 revealed a decrease inχ mT product upon cooling, ascribed to antiferromagnetic coupling concomitant with single‐ion effects [g = 2.39(2) withD = 40(3) cm–1andJ = –3.55(4) cm–1]. Compounds1 and5 undergo blue‐violet fluorescence upon ultraviolet irradiation; the zinc derivative1 shows potential as a sensor for the solution‐phase detection of nitrobenzene andm ‐nitrophenol. Thermal decomposition behavior of the five new phases is also discussed. -
Abstract Supramolecular hosts bind to inorganic anions at a fast rate and select them in proportion with thermodynamic stability of the corresponding [anion⊂host] complexes, forming in a reversible manner. In this study, we describe the action of hexapodal capsule
1 and its remarkable ability to select anions based on a large span of rates by which they enter this host. The thermodynamic affinity of1 toward eighteen anions extends over eight orders of magnitude (0<K a<108 M−1;1H NMR spectroscopy). The capsule would retain CO32−(K a=107 M−1) for hours in the presence of eleven competing anions, including stronger binding SO42−, HAsO42−and HPO42−(K a=107–108 M−1). The observed selection resulted from1 possessing narrow apertures (ca. 3×6 Å) comparable in size to anions (d =3.5–7.1 Å) slowing down the encapsulation to last from seconds to days. The unorthodox mode of action of1 sets the stage for creating hosts that pick anions by their ability to access the host. -
Abstract Supramolecular hosts bind to inorganic anions at a fast rate and select them in proportion with thermodynamic stability of the corresponding [anion⊂host] complexes, forming in a reversible manner. In this study, we describe the action of hexapodal capsule
1 and its remarkable ability to select anions based on a large span of rates by which they enter this host. The thermodynamic affinity of1 toward eighteen anions extends over eight orders of magnitude (0<K a<108 M−1;1H NMR spectroscopy). The capsule would retain CO32−(K a=107 M−1) for hours in the presence of eleven competing anions, including stronger binding SO42−, HAsO42−and HPO42−(K a=107–108 M−1). The observed selection resulted from1 possessing narrow apertures (ca. 3×6 Å) comparable in size to anions (d =3.5–7.1 Å) slowing down the encapsulation to last from seconds to days. The unorthodox mode of action of1 sets the stage for creating hosts that pick anions by their ability to access the host. -
Abstract The new material polypyrrole/MoS42−(MoS4‐Ppy), prepared by ion‐exchange of NO3‐ of NO3‐Ppy with MoS42−, displays high acid stability and excellent uptake for heavy metal ions such as Hg2+, Ag+, Cu2+, and Pb2+. The different maximum adsorption capacities (
q m) for Cu2+, Pb2+, Hg2+, and Ag+depend on the various binding modes arising from the different thiophilicity of these metal ions. The removals of Ag+and Pb2+reach >99.6% within 5 min, and for highly toxic Hg2+, >98% removal achieves at 1 min. At strong acid limit, the exceptionalq m(Ag+) of 725 mg g−1places the MoS4‐Ppy at the top of materials for such removal. Uptake kinetics of Ag+, Hg2+, and Pb2+is extremely fast: >99.9% removal rates at wide pH range (0.5–6) within 1–5 min. Also, at strongly acidic conditions (pH ≈ 1), for highly toxic Hg2+, <2 ppb concentration can be achieved, accepted as safe limit. The MoS4‐Ppy demonstrates an outstanding ability to separate low‐concentrated Ag+from high concentrated Cu2+especially under strong acidic conditions (pH ≈ 1), showing a large separation factor SFAg/Cu(K dAg/K dCu) of 105(>100). MoS4‐Ppy is a superior and novel sorbent material for water remediation applications as well as precious metals recovery.