skip to main content


Title: Phosphonium‐based polyelectrolyte networks with high thermal stability, high alkaline stability, and high surface areas
ABSTRACT

Phosphonium‐containing polyelectrolyte networks (PENs) (P1P4) were prepared by cyclotrimerization of bis(4‐acetylphenyl)diphenylphosphonium bromide (M1) and 1,4‐diacetylbenzene (M2) withp‐toluene sulfonic acid in variousM1:M2ratios (1,0, 1:1, 1:2, and 1:4). The relative abundance of the PAr4+units in each PEN was demonstrated to influence thermal stability, alkaline stability, water uptake, surface area, and CO2uptake in predictable ways. Impressively, PENs with NTf2counterions (Tf = CF3SO3) did not exhibit 5% mass loss until heating above 400 °C. Alkaline stability, tested by challenging a PEN with 6MNaOH(aq) at 65 °C for 120 h, increased with increasing PAr4+content, which reflected the enhanced reactivity of the HOanion in more hydrophobic materials (i.e., PENs with lowerM1:M2ratios). The specific surface areas estimated by Brunauer‐Emmett‐Teller (BET) analysis for these PENs were above 60 m2/g under N2and nearly 90 m2/g under CO2. Notably,P3(in which 33% of monomers comprise a phosphonium moiety) exhibited a CO2uptake affinity of one CO2molecule adsorbed for every phosphonium site. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 598–604

 
more » « less
NSF-PAR ID:
10462504
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part A: Polymer Chemistry
Volume:
57
Issue:
5
ISSN:
0887-624X
Page Range / eLocation ID:
p. 598-604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Two tetraarylphosphonium polyelectrolytes having perfluorocyclobutyl units in their backbones have been prepared in which the counteranion is either bromide (PFP·Br) or bis(trifluoromethyl)sulfonimide (PFP·NTf2). These polymers exhibit high thermal stability as assessed by thermogravimetric analysis, with a decomposition temperature of 460 °C forPFP·NTf2. Even after heating at 300 °C for 72 h,PFP·NTf2shows no signs of degradation detectable by nuclear magnetic resonance spectrometry. As is typical for many tetraarylphosphonium species, films of these polymers can be quite resistant to degradation by alkaline solution. Upon alkaline challenge by exposure to 6MNaOH at 65 °C for 24 h, for example, only 16% of the phosphonium centers inPFP·NTf2are degraded, makingPFP·NTf2one of the most alkaline‐stable phosphonium polymers to date. Despite having ionic backbones,PFP·Br andPFP·NTf2exhibit very low critical surface energies of 26.1 and 22.9 mJ m−1, respectively. These values are on par with the values for poly(vinylene fluoride) and dimethylsiloxane. Such low surface energy polycations capable of high alkaline stability may find application as components of alkaline fuel cell membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 2267–2272

     
    more » « less
  2. Abstract

    The new material polypyrrole/MoS42−(MoS4‐Ppy), prepared by ion‐exchange of NO3‐ of NO3‐Ppy with MoS42−, displays high acid stability and excellent uptake for heavy metal ions such as Hg2+, Ag+, Cu2+, and Pb2+. The different maximum adsorption capacities (qm) for Cu2+, Pb2+, Hg2+, and Ag+depend on the various binding modes arising from the different thiophilicity of these metal ions. The removals of Ag+and Pb2+reach >99.6% within 5 min, and for highly toxic Hg2+, >98% removal achieves at 1 min. At strong acid limit, the exceptionalqm(Ag+) of 725 mg g−1places the MoS4‐Ppy at the top of materials for such removal. Uptake kinetics of Ag+, Hg2+, and Pb2+is extremely fast: >99.9% removal rates at wide pH range (0.5–6) within 1–5 min. Also, at strongly acidic conditions (pH ≈ 1), for highly toxic Hg2+, <2 ppb concentration can be achieved, accepted as safe limit. The MoS4‐Ppy demonstrates an outstanding ability to separate low‐concentrated Ag+from high concentrated Cu2+especially under strong acidic conditions (pH ≈ 1), showing a large separation factor SFAg/Cu(KdAg/KdCu) of 105(>100). MoS4‐Ppy is a superior and novel sorbent material for water remediation applications as well as precious metals recovery.

     
    more » « less
  3. Abstract

    Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, toSphagnumbog underlain by permafrost, toEriophorum‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO2and CH4exchange, and 21 core profiles for210Pb and14C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2sink, but this CO2sink is increasingly offset by rising CH4emissions, dominated by modern carbon as determined by14C. The higher CH4emissions result in higher net CO2‐equivalentemissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.

     
    more » « less
  4. ABSTRACT

    The physical aging behavior, time‐dependent densification, of thin polystyrene (PS) films supported on silicon are investigated using ellipsometry for a large range of molecular weights (MWs) fromMw = 97 to 10,100 kg mol−1. We report an unexpected MW dependence to the physical aging rate ofh < 80‐nm thick films not present in bulk films, where samples made from ultra‐high MWs ≥ 6500 kg mol−1exhibit on average a 45% faster aging response at an aging temperature of 40 °C compared with equivalent films made from (merely) high MWs ≤ 3500 kg mol−1. This MW‐dependent difference in physical aging response indicates that the breadth of the gradient in dynamics originating from the free surface in these thin films is diminished for films of ultra‐high MW PS. In contrast, measures of the film‐average glass transition temperatureTg(h) and effective average film density (molecular packing) show no corresponding change for the same range of film thicknesses, suggesting physical aging may be more sensitive to differences in dynamical gradients. These results contribute to growing literature reports signaling that chain connectivity and entropy play a subtle, but important role in how glassy dynamics are propagated from interfaces. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1224–1238

     
    more » « less
  5. ABSTRACT

    This work investigates effects of poly(γ‐butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withMnranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2271–2279

     
    more » « less