All exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.
more »
« less
The Antarctic Slope Current in a Changing Climate
Abstract The Antarctic Slope Current (ASC) is a coherent circulation feature that rings the Antarctic continental shelf and regulates the flow of water toward the Antarctic coastline. The structure and variability of the ASC influences key processes near the Antarctic coastline that have global implications, such as the melting of Antarctic ice shelves and water mass formation that determines the strength of the global overturning circulation. Recent theoretical, modeling, and observational advances have revealed new dynamical properties of the ASC, making it timely to review. Earlier reviews of the ASC focused largely on local classifications of water properties of the ASC's primary front. Here we instead provide a classification of the current's frontal structure based on the dynamical mechanisms that govern both the along‐slope and cross‐slope circulation; these two modes of circulation are strongly coupled, similar to the Antarctic Circumpolar Current. Highly variable motions, such as dense overflows, tides, and eddies are shown to be critical components of cross‐slope and cross‐shelf exchange, but understanding of how the distribution and intensity of these processes will evolve in a changing climate remains poor due to observational and modeling limitations. Results linking the ASC to larger modes of climate variability, such as El Niño, show that the ASC is an integral part of global climate. An improved dynamical understanding of the ASC is still needed to accurately model and predict future Antarctic sea ice extent, the stability of the Antarctic ice sheets, and the Southern Ocean's contribution to the global carbon cycle.
more »
« less
- PAR ID:
- 10462615
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Reviews of Geophysics
- Volume:
- 56
- Issue:
- 4
- ISSN:
- 8755-1209
- Page Range / eLocation ID:
- p. 741-770
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The stability of the West Antarctic Ice Sheet (WAIS) depends on ocean heat transport toward its base and remains a source of uncertainty in sea level rise prediction. The Antarctic Slope Current (ASC), a major boundary current of the ocean's global circulation, serves as a dynamic gateway for heat transport toward Antarctica. Here, we use observations collected from the Bellingshausen Sea to propose a mechanistic explanation for the initiation of the westward-flowing ASC. Waters modified throughout the Bellingshausen Sea by ocean-sea-ice and ocean-ice-shelf interactions are exported to the continental slope in a narrow, topographically steered western boundary current. This focused outflow produces a localized front at the shelf break that supports the emerging ASC. This mechanism emphasizes the importance of buoyancy forcing, integrated over the continental shelf, as opposed to local wind forcing, in the generation mechanism and suggests the potential for remote control of melt rates of WAIS' largest ice shelves.more » « less
-
Abstract The stability of the West Antarctic Ice Sheet (WAIS) depends on ocean heat transport toward its base and remains a source of uncertainty in sea level rise prediction. The Antarctic Slope Current (ASC), a major boundary current of the ocean's global circulation, serves as a dynamic gateway for heat transport toward Antarctica. Here, we use observations collected from the Bellingshausen Sea to propose a mechanistic explanation for the initiation of the westward‐flowing ASC. Waters modified throughout the Bellingshausen Sea by ocean‐sea‐ice and ocean‐ice‐shelf interactions are exported to the continental slope in a narrow, topographically steered western boundary current. This focused outflow produces a localized front at the shelf break that supports the emerging ASC. This mechanism emphasizes the importance of buoyancy forcing, integrated over the continental shelf, as opposed to local wind forcing, in the generation mechanism and suggests the potential for remote control of melt rates of WAIS' largest ice shelves.more » « less
-
Abstract The Antarctic Slope Current (ASC) plays a central role in redistributing water masses, sea ice, and tracer properties around the Antarctic margins, and in mediating cross-slope exchanges. While the ASC has historically been understood as a wind-driven circulation, recent studies have highlighted important momentum transfers due to mesoscale eddies and tidal flows. Furthermore, momentum input due to wind stress is transferred through sea ice to the ASC during most of the year, yet previous studies have typically considered the circulations of the ocean and sea ice independently. Thus, it remains unclear how the momentum input from the winds is mediated by sea ice, tidal forcing, and transient eddies in the ocean, and how the resulting momentum transfers serve to structure the ASC. In this study the dynamics of the coupled ocean–sea ice–ASC circulation are investigated using high-resolution process-oriented simulations and interpreted with the aid of a reduced-order model. In almost all simulations considered here, sea ice redistributes almost 100% of the wind stress away from the continental slope, resulting in approximately identical sea ice and ocean surface flows in the core of the ASC in a fully spun-up equilibrium state. This ice–ocean coupling results from suppression of vertical momentum transfer by mesoscale eddies over the continental slope, which allows the sea ice to accelerate the ocean surface flow until the speeds coincide. Tidal acceleration of the along-slope flow exaggerates this effect and may even result in ocean-to-ice momentum transfer. The implications of these findings for along- and across-slope transport of water masses and sea ice around Antarctica are discussed.more » « less
-
Abstract We use two coupled climate models, GFDL‐CM4 and GFDL‐ESM4, to investigate the physical response of the Southern Ocean to changes in surface wind stress, Antarctic meltwater, and the combined forcing of the two in a pre‐industrial control simulation. The meltwater cools the ocean surface in all regions except the Weddell Sea, where the wind stress warms the near‐surface layer. The limited sensitivity of the Weddell Sea surface layer to the meltwater is due to the spatial distribution of the meltwater fluxes, regional bathymetry, and large‐scale circulation patterns. The meltwater forcing dominates the Antarctic shelf response and the models yield strikingly different responses along West Antarctica. The disagreement is attributable to the mean‐state representation and meltwater‐driven acceleration of the Antarctic Slope Current (ASC). In CM4, the meltwater is efficiently trapped on the shelf by a well resolved, strong, and accelerating ASC which isolates the West Antarctic shelf from warm offshore waters, leading to strong subsurface cooling. In ESM4, a weaker and diffuse ASC allows more meltwater to escape to the open ocean, the West Antarctic shelf does not become isolated, and instead strong subsurface warming occurs. The CM4 results suggest a possible negative feedback mechanism that acts to limit future melting, while the ESM4 results suggest a possible positive feedback mechanism that acts to accelerate melt. Our results demonstrate the strong influence the ASC has on governing changes along the shelf, highlighting the importance of coupling interactive ice sheet models to ocean models that can resolve these dynamical processes.more » « less