skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solution-phase synthesis of the chalcogenide perovskite barium zirconium sulfide as colloidal nanomaterials
Chalcogenide perovskites such as BaZrS 3 have promising optoelectronic properties. Methods to produce these materials at low temperatures, especially in the solution phase, are currently scarce. We describe a solution-phase synthesis of colloidal nanoparticles of BaZrS 3 using reactive metal amide precursors. The nanomaterials are crystallographically and spectroscopically characterized.  more » « less
Award ID(s):
2004421
PAR ID:
10462628
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
58
Issue:
75
ISSN:
1359-7345
Page Range / eLocation ID:
10512 to 10515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Perovskite chalcogenides are gaining substantial interest as an emerging class of semiconductors for optoelectronic applications. High-quality samples are of vital importance to examine their inherent physical properties. We report the successful crystal growth of the model system, BaZrS 3 and its Ruddlesden–Popper phase Ba 3 Zr 2 S 7 by a flux method. X-ray diffraction analyses showed the space group of Pnma with lattice constants of a = 7.056(3) Å, b = 9.962(4) Å, and c = 6.996(3) Å for BaZrS 3 and P 4 2 / mnm with a = 7.071(2) Å, b = 7.071(2) Å, and c = 25.418(5) Å for Ba 3 Zr 2 S 7 . Rocking curves with full width at half maximum of 0.011° for BaZrS 3 and 0.027° for Ba 3 Zr 2 S 7 were observed. Pole figure analysis, scanning transmission electron microscopy images, and electron diffraction patterns also establish the high quality of the grown crystals. The octahedral tilting in the corner-sharing octahedral network is analyzed by extracting the torsion angles. 
    more » « less
  2. Abstract Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3and BaHfS3chalcogenide perovskite films using single‐phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications. 
    more » « less
  3. Chalcogenide perovskites are promising semiconductor materials with attractive optoelectronic properties and appreciable stability, making them enticing candidates for photovoltaics and related electronic applications. Traditional synthesis methods for these materials have long suffered from high‐temperature requirements of 800–1000 °C. However, the recently developed solution processing route provides a way to circumvent this. By utilizing barium thiolate and ZrH2, this method is capable of synthesizing BaZrS3perovskite at modest temperatures (500–600 °C), generating crystalline domains on the order of hundreds of nanometers in size. Herein, a systematic study of this solution processing route is done to gain a mechanistic understanding of the process and to supplement the development of device quality fabrication methodologies. A barium polysulfide liquid flux is identified as playing a key role in the rapid synthesis of large‐grain BaZrS3perovskite at modest temperatures. Additionally, this mechanism is successfully extended to the related BaHfS3perovskite. The reported findings identify viable precursors, key temperature regimes, and reaction conditions that are likely to enable the large‐grain chalcogenide perovskite growth, essential toward the formation of device‐quality thin films. 
    more » « less
  4. null (Ed.)
    Orthorhombic BaZrS 3 is a potential optoelectronic material with prospective applications in photovoltaic and thermoelectric devices. While efforts exist on understanding the effects of elemental substitution and material stability, fundamental knowledge on the electronic transport properties are sparse. We employ first principles calculations to examine the electronic band structure and optical band gap and interrogate the effect of electron transport on electrical and thermal conductivities, and Seebeck coefficient, as a function of temperature and chemical potential. Our results reveal that BaZrS 3 has a band gap of 1.79 eV in proximity of the optimal 1.35 eV recommended for single junction photovoltaics. An absorption coefficient of 3 × 10 5 cm −1 at photon energies of 3 eV is coupled with an early onset to optical absorption at 0.5 eV, significantly below the optical band gap. The carrier effective mass being lower for electrons than holes, we find the Seebeck coefficient to be higher for holes than electrons. A notable (≈1.0 at 300 K) upper limit to the thermoelectric figure of merit, obtained due to high Seebeck coefficient (3000 μV K −1 ) and ultra-low electron thermal conductivity, builds promise for BaZrS 3 as a thermoelectric. 
    more » « less
  5. Abstract The making of BaZrS3thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS3forms in the orthorhombic distorted‐perovskite structure with corner‐sharing ZrS6octahedra. The single‐step MBE process results in films smooth on the atomic scale, with near‐perfect BaZrS3stoichiometry and an atomically sharp interface with the LaAlO3substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self‐assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated‐cube‐on‐cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high‐quality epitaxial thin films, as has been long‐established for other systems including Si‐Ge, III‐Vs, and II‐VIs. The methods demonstrated here also represent a revival of gas‐source chalcogenide MBE. 
    more » « less