skip to main content


Title: Silver‐Nanowire‐Based Interferometric Optical Tweezers for Enhanced Optical Trapping and Binding of Nanoparticles
Abstract

Light‐induced self‐assembly offers a new route to build mesoscale optical matter arrays from nanoparticles (NPs), yet the low stability of optical matter systems limits the assembly of large‐scale NP arrays. Here it is shown that the interferometric optical fields created by illuminating a single Ag nanowire deposited on a coverslip can enhance the electrodynamic interactions among NPs. The Ag nanowire serves as a plasmonic antenna to shape the incident laser beam and guide the optical assembly of colloidal metal (Ag and Au) and dielectric (polystyrene) NPs in solution. By controlling the laser polarization direction, both the mesoscale interactions among multiple NPs and the near‐field coupling between the NPs and nanowire can be tuned, leading to large‐scale and stable optical matter arrays consisting of up to 60 NPs. These results demonstrate that single Ag nanowires can serve as multifunctional antennas to guide the optical trapping and binding of multiple NPs and provide a new strategy to control electrodynamic interactions using hybrid nanostructures.

 
more » « less
NSF-PAR ID:
10462683
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
29
Issue:
7
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ag nanostructures exhibit extraordinary optical properties, which are important for photonic device integration. Herein, we deposited Ag–LiNbO 3 (LNO) nanocomposite thin films with Ag nanoparticles (NPs) embedded into the LNO matrix by the co-deposition of Ag and LNO using a pulsed laser deposition (PLD) method. The density and size of Ag NPs were tailored by varying the Ag composition. Low-density and high-density Ag–LNO nanocomposite thin films were deposited and their optical properties, such as transmittance spectra, ellipsometry measurement, as well as angle-dependent and polarization-resolved reflectivity spectra, were explored. The Ag–LNO films show surface plasmon resonance (SPR) in the visible range, tunable optical constants and optical anisotropy, which are critical for photonic device applications. 
    more » « less
  2. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    As part of the Keck All-sky Precision Adaptive optics (KAPA) project a laser Asterism Generator (AG) is being implemented on the Keck I telescope. The AG provides four Laser Guide Stars (LGS) to the Keck Adaptive Optics (AO) system by splitting a single 22W laser beam into four beams of equal intensity. We present the design and implementation of the AG for KAPA. We discuss the optical design and layout, the details of the mechanical design and fabrication, and the challenges of designing the assembly to fit into the limited available space on the Keck telescope. 
    more » « less
  3. Due to the current limitations of sequencing technologies, de novo genome assembly is typically carried out in two stages, namely contig (sequence) assembly and scaffolding. While scaffolding is computationally easier than sequence assembly, the scaffolding problem can be challenging due to the high repetitive content of eukaryotic genomes, possible mis-joins in assembled contigs and inaccuracies in the linkage information. Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physical or genetic) as linkage information. Optical maps (in particular Bionano Genomics maps) have been extensively used in many recent large-scale genome assembly projects (e.g., goat, apple, barley, maize, quinoa, sea bass, among others). However, the most commonly used scaffolding tools have a serious limitation: they can only deal with one optical map at a time, forcing users to alternate or iterate over multiple maps. In this paper, we introduce a novel scaffolding algorithm called OMGS that for the first time can take advantages of multiple optical maps. OMGS solves several optimization problems to generate scaffolds with optimal contiguity and correctness. Extensive experimental results demonstrate that our tool outperforms existing methods when multiple optical maps are available, and produces comparable scaffolds using a single optical map. OMGS can be obtained from GIT. 
    more » « less
  4. Abstract

    Optical binding of metal nanoparticles (NPs) provides a promising way to create tunable photonic materials and devices, where the ultrastrong interparticle interaction is generally attributed to the localized surface plasmon resonances of NPs. Here, it is revealed that the optical binding of metal NPs can be self‐reinforced by the plasmonic surface lattice resonances (PSLRs) associated with the discrete NP arrays. Through simulations and experiments, it is demonstrated that PSLRs can spontaneously arise in optically bound gold NP chains with just a few NPs when they are relatively large, e.g., 150 nm in diameter. Additionally, the PSLRs are enhanced by increasing the chain length, leading to stronger optical binding stiffness. These results reveal a previously unidentified factor that contributes to the ultrastrong optical binding of metal NPs. More importantly, this study presents a prospect for building freestanding and reconfigurable NP arrays that naturally support PLSRs for sensing and other applications.

     
    more » « less
  5. Abstract

    Transparent microelectrodes have recently emerged as a promising approach for crosstalk‐free multifunctional electrical and optical biointerfacing. High‐performance flexible platforms that allow seamless integration with soft tissue systems for such applications are urgently needed. Here, silver nanowires (Ag NWs)‐based transparent microelectrode arrays (MEAs) and interconnects are designed to meet this demand. The nanowire networks exhibit a high optical transparency >90.0% at 550 nm, and superior mechanical stability up to 100,000 bending cycles at 5 mm radius. The Ag NWs microelectrodes preserve low normalized electrochemical impedance of 3.4–15 Ω cm2at 1 kHz, and the interconnects demonstrate excellent sheet resistance (Rsh) of 4.1–25 Ω sq−1. In vivo histological analysis reveals that the Ag NWs structures are biocompatible. Studies on Langendorff‐perfused mouse and rat hearts demonstrate that the Ag NWs MEAs enable high‐fidelity real‐time monitoring of heart rhythm during co‐localized optogenetic pacing and optical mapping. This proof‐of‐concept work illustrates that the solution‐processed, transparent, and flexible Ag NWs structures are a promising candidate for the next‐generation of large‐area multifunctional biointerfaces for interrogating complex biological systems in basic and translational research.

     
    more » « less