skip to main content


Title: Morphology and dynamics of the intertidal floodplain along the Amazon tidal river
Abstract

Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River‐bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal‐river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. ©  2018 John Wiley & Sons, Ltd.

 
more » « less
PAR ID:
10462699
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
44
Issue:
1
ISSN:
0197-9337
Page Range / eLocation ID:
p. 204-218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sediment budget and sediment availability are direct metrics for evaluating the resilience of coastal bays to sea‐level rise (SLR). Here we use a high‐resolution numerical model of a tidally dominated marsh‐lagoon system to explore feedbacks between SLR and sediment dynamics. SLR augments tidal prism and inundation depth, facilitating sediment deposition on the marsh platform. At the same time, our results indicate that SLR enhances ebb‐dominated currents and increases sediment resuspension, reducing the sediment‐trapping capacity of tidal flats and bays and leading to a negative sediment budget for the entire system. This bimodal distribution of sediments budget trajectories will have a profound impact on the morphology of coastal bays, increasing the difference in elevation between salt marshes and tidal flats and potentially affecting intertidal ecosystems. Our results also clearly indicate that landforms lower with respect to the tidal frame are more affected by SLR than salt marshes.

     
    more » « less
  2. ABSTRACT

    Deltas are crucial for land building and ecological services due to their ability to store mineral sediment, carbon and potential pollutants. A decline in suspended sediment discharge in large rivers caused by the construction of mega‐dams might imperil deltaic flats and wetlands. However, there has not been clear evidence of a sedimentary shift in the downstream tidal flats that feed coastal wetlands and the intertidal zone with sediments. Here, integrated intertidal/subaqueous sediment samples, multi‐year bathymetries, fluvial and deltaic hydrological and sediment transport data in the Nanhui tidal flats and Nanhui Shoal in the Changjiang (Yangtze) Delta, one of the largest mega‐deltas in the world, were analysed to discern how sedimentary environments changed in response to the operations of the Three Gorges Dam. Results reveal that the coarser sediment fractions of surficial sediments in the subaqueous Nanhui Shoal increased between 2004 to 2021, and the overall grain size coarsened from 18.5 to 27.3 μm. Moreover, intertidal sediments in cores coarsened by 25% after the 1990s. During that period, the northern part of the Nanhui Shoal suffered large‐scale erosion, while the southern part accreted in recent decades. Reduced suspended sediment discharge of the Changjiang River combined with local resuspension of fine‐grained sediments are responsible for tidal flat erosion. This study found that the spatial pattern of grain‐size parameters has shifted from crossing the bathymetric isobaths to being parallel to them. Higher tide level and tidal range induced by sea‐level rise, an upstream increase in bed shear stress and larger waves likely further exacerbated erosion and sediment coarsening in deltaic flats. As a result, this sediment‐starved estuary coupled with sea‐level rise and artificial reclamations have enhanced the vulnerability of tidal flats in Changjiang Delta, this research is informative to the sedimentary shift of worldwide mega‐deltas.

     
    more » « less
  3. Abstract

    Extensive floodplains throughout the Amazon basin support important ecosystem services and influence global water and carbon cycles. A recent change in the hydroclimatic regime of the region, with increased rainfall in the northern portions of the basin, has produced record-breaking high water levels on the Amazon River mainstem. Yet, the implications for the magnitude and duration of floodplain inundation across the basin remain unknown. Here we leverage state-of-the-art hydrological models, supported byin-situand remote sensing observations, to show that the maximum annual inundation extent along the central Amazon increased by 26% since 1980. We further reveal increased flood duration and greater connectivity among open water areas in multiple Amazon floodplain regions. These changes in the hydrological regime of the world’s largest river system have major implications for ecology and biogeochemistry, and require rapid adaptation by vulnerable populations living along Amazonian rivers.

     
    more » « less
  4. Abstract

    The processes and deposits of tide‐dominated river deltas and estuaries are well‐understood, but the sedimentary dynamics of tide‐dominated straits and seaways are relatively little studied. Although recent depositional models have started to fill this gap, many aspects of tidal strait sedimentation such as interaction with strait‐margin alluvial fans and marginal marine systems remain poorly understood. This paper presents a study of the late Miocene basal carbonate member of the Bouse Formation exposed along the lower Colorado River, where prior studies have suggested a tidal influence on deposition. This study explores the applicability of tidal strait models in a continental oblique‐rift setting, and tests hypotheses for depositional processes and environments through detailed analysis of sedimentary facies, cross‐bedding architecture and palaeocurrent data. Mixed carbonate–siliciclastic facies on the west margin of the southern Blythe Basin record sedimentation in alluvial fans and fan‐fringing tidal flats at the retreating margin of a transgressive tidal strait. Pre‐Bouse normal faults established a narrow, tectonically confined basin architecture that led to amplification of tidal currents. Basin‐margin deposits pass laterally and up‐section into high‐energy cross‐bedded grainstone facies that record southward migration of compound dunes in the dune‐bedded strait zone of a shallow (ca25 m) tidal strait. These findings provide the basis for recognition of strait‐margin facies in other settings where complex facies associations result from along‐strike variations in palaeobathymetry and current velocity. The results support a tidal origin for the southern Bouse Formation and provide new evidence for post‐Miocene uplift of the lower Colorado River Valley and adjacent areas.

     
    more » « less
  5. The morphology of river levees and floodplains is an important control on river-floodplain connectivity within a river system under sub-bankfull conditions, and this morphology changes as a river approaches the coast due to backwater influence. Floodplain width can also vary along a river, and floodplain constrictions in the form of bluffs adjacent to the river can influence inundation extent. However, the relative controls of backwater-influenced floodplain topography and bluff topography on river-floodplain connectivity have not been studied. We measure discharge along the lower Trinity River (Texas, USA) during high flow to determine which floodplain features are associated with major river-floodplain flow exchanges. We develop a numerical model representing the transition to backwater-dominated river hydraulics, and quantify downstream changes in levee channelization, inundation, and fluxes along the river-floodplain boundary. We model passive particle transport through the floodplain, and compute residence times as a function of location where particles enter the floodplain. We find that bluff topography controls flow from the floodplain back to the river, whereas levee topography facilitates flow to the floodplain through floodplain channels. Return flow to the river is limited to locations just upstream of bluffs, even under receding flood conditions, whereas outflow locations are numerous and occur all along the river. Residence times for particles entering the floodplain far upstream of bluffs are as much as two orders of magnitude longer than those for particles entering short distances upstream of bluffs. This study can benefit floodplain ecosystem management and restoration plans by informing on the key locations of lateral exchange and variable residence time distributions in river-floodplain systems.

     
    more » « less