Thermospheric data assimilation is limited due to the lack of continuous observation of the neutral state. Recently, the thermospheric wind data from the Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) on NASA's Ionospheric CONnection Explorer (ICON) became available. ICON/MIGHTI provides near‐continuous observations of the mid‐ and low‐latitude thermospheric meridional and zonal winds ICON/MIGHTI observes the thermosphere zonal and meridional winds at low‐middle latitudes between 90 and 300 km during the daytime, and 90–105 and above 210 km during the nighttime. This study assesses the impact of assimilating ICON/MIGHTI winds in the National Center for Atmospheric Research Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) + Data Assimilation Research Testbed (DART) on the specification and short‐term forecasting of the thermosphere. Observing system simulation experiments of WACCM‐X + DART with and without assimilating synthetic ICON/MIGHTI meridional and zonal wind profiles are performed. The result shows that this new data set can correct the wind specification throughout the mid‐ and low‐latitude thermosphere, especially around the 90–160 km altitude region. A notable impact is also shown in the region above 300 km altitude, which is above the altitude of ICON/MIGHTI wind observations. The impact of ICON/MIGHTI data on the zonal wind field is larger than on the meridional wind field. The errors of the ensemble mean from the truth of meridional and zonal wind fields in the mid‐and low‐latitude region are reduced by 6% and 12%, respectively, with the help of ICON/MIGHTI wind data.
Midlatitude thermospheric wind observations from the Michelson Interferometer for Global High‐resolution Thermospheric Imaging on board the Ionospheric Connections Explorer (ICON/MIGHTI) and from the ground‐based Boulder, Urbana, Millstone Hill and Morocco Fabry‐Perot interferometers (FPIs) are used to study a distinct solar local time (SLT) evolution in the nighttime wind field around the December solstice period. Our results show, to the best of our knowledge for the first time, strong non‐migrating tides in midlatitude thermospheric winds using coincident from different observing platforms. These observations exhibited a structure of strong (∼50–150 m/s) eastward and southward winds in the pre‐midnight sector (20:00–23:00 SLT) and in the post‐midnight sector (02:00–03:00 SLT), with a strong suppression around midnight. Tidal analysis of ICON/MIGHTI data revealed that the signature before midnight was driven by diurnal (D0, DE1, DE2, DW2) and semidiurnal (SE2, SE3, SW1, SW4) tides, and that strong terdiurnal (TE2, TW1, TW2, TW5) and quatradiurnal (QW2, QW3, QW6) tides were important contributors in the mid‐ and post‐midnight sectors. ICON/MIGHTI tidal reconstructions successfully reproduced the salient structures observed by the FPI and showed a longitudinal dual‐peak variation with peak magnitudes around 200°–120°W and 30°W–60°E. The signature of the structure extended along the south‐to‐north direction from lower latitudes, migrated to earlier local times with increasing latitude, and strengthened above 30°N. Tidal analysis using historical FPI data revealed that these structures were often seen during previous December solstices, and that they are much stronger for lower solar flux conditions, consistent with an upward‐propagating tidal origin.
more » « less- PAR ID:
- 10462701
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We used observations from the Peruvian Fabry‐Perot Interferometer network and from the Jicamarca radar to study the coupling of equatorial nighttime thermospheric winds and ionospheric drifts under moderate solar flux conditions. We show that the coupling of the extended quiet time zonal winds and drifts increases from dusk to midnight and is stronger during equinox than during June solstice. After midnight, they are strongly coupled, except during December solstice when the drifts are stronger. The nighttime disturbance zonal winds and drifts, derived by removing the corresponding quiet time values, are westward with peak magnitudes around midnight. They are in close agreement, except at early night when the winds are stronger, and have strongest (weakest) magnitudes during equinox (June solstice). We also present observations showing the strong neutral wind‐plasma drift coupling during the September 2017 and August 2015 large geomagnetic storms. We show that during the early phase of the September 2017 storm there were large and short‐lived, prompt penetration electric field‐driven, correlated oscillations (~1 hr) in the vertical and zonal plasma drifts, and in the zonal and meridional winds. These are the first observations of prompt penetration‐driven equatorial zonal and meridional wind disturbances. In this event, the vertical and zonal drift oscillations were anticorrelated, and the zonal winds followed the zonal drift oscillations with a delay of ~15 min. Our results illustrate the strong coupling of equatorial thermospheric winds and plasma drifts during geomagnetically quiet as well as during short‐lived prompt penetration and long‐lasting disturbance dynamo events.
-
Comparison of Thermospheric Winds Measured by GOCE and Ground‐Based FPIs at Low and Middle Latitudes
Abstract The re‐estimates of thermospheric winds from the Gravity field and steady‐state Ocean Circulation Explorer (GOCE) accelerometer measurements were released in April 2019. In this study, we compared the new‐released GOCE crosswind (cross‐track wind) data with the horizontal winds measured by four Fabry‐Perot interferometers (FPIs) located at low and middle latitudes. Our results show that during magnetically quiet periods the GOCE crosswind on the dusk side has typical seasonal variations with largest speed around December and the lowest speed around June, which is consistent with the ground‐FPI measurements. The correlation coefficients between the four stations and GOCE crosswind data all reach around 0.6. However, the magnitude of the GOCE crosswind is somehow larger than the FPIs wind, with average ratios between 1.37 and 1.69. During geomagnetically active periods, the GOCE and FPI derived winds have a lower agreement, with average ratios of 0.85 for the Asian station (XL) and about 2.15 for the other three American stations (PAR, Arecibo and CAR). The discrepancies of absolute wind values from the GOCE accelerometer and ground‐based FPIs should be mainly due to the different measurement principles of the two techniques. Our results also suggested that the wind measurements from the XL FPI located at the Asian sector has the same quality with the FPIs at the American sector, although with lower time resolution.
-
Abstract We used Fabry‐Perot Interferometer (FPI) observations at Jicamarca, Nasca, and Arequipa, Peru, from 2011 to 2017 to study the nighttime zonal and meridional disturbance winds over the Peruvian equatorial region. We derived initially the seasonal‐dependent average thermospheric winds corresponding to 12 hr of continuous geomagnetically quiet conditions. These quiet‐time climatological winds, which are in general agreement with results from the Horizontal Wind Model (HWM14), were then used as baselines for the calculation of the disturbance winds. Our results indicate that the nighttime zonal disturbance winds are westward with peak values near midnight and with magnitudes much larger than predicted by the Disturbance Wind Model (DWM07). The premidnight equinoctial and June solstice westward disturbance winds have comparable values and increase with local time. The postmidnight westward disturbance winds decrease toward dawn and are largest during equinox and smallest during June solstice. The meridional average disturbance winds have small values throughout the night. They are northward in the premidnight sector, and southward with larger (smaller) values during December solstice (equinox) in the postmidnight sector. We also present observations showing that during the main and recovery phases of the April 2012 and May 2016 geomagnetic storms the zonal disturbance winds have much larger magnitudes and lifetimes (up to about 48 hr) than suggested by the HWM14. These observations highlight the importance of longer‐term disturbance wind effects. The large and short‐lived (about 2 hr) observed meridional wind disturbances are not reproduced by current climatological empirical models.
-
Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes (
30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneous in situ ion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generatedin situ . Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due toin situ tidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves.