ABSTRACT We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $$(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $$M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$$. Cluster formation is triggered when at least $$10^7\, \mathrm{M}_{\odot }$$ of dense, turbulent gas reaches $$\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $$2-3\, {\rm Gyr}$$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable.
more »
« less
The inefficiency of stellar feedback in driving galactic outflows in massive galaxies at high redshift
ABSTRACT Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($$10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $$\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems.
more »
« less
- PAR ID:
- 10462706
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 525
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 5388-5405
- Size(s):
- p. 5388-5405
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $$M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($$M_{*}\lesssim 10^7\, \rm {M}_{\odot }$$) are mostly quiescent and higher mass satellites ($$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$) are mostly star forming, with intermediate-mass satellites ($$M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($$M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $$M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $$M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$$, they do not generally reproduce SAGA’s turnover at lower masses.more » « less
-
ABSTRACT We present an investigation of clustered stellar feedback in the form of superbubbles identified within 11 galaxies from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, at both cosmic noon (1 < z < 3) and in the local universe. We study the spatially resolved multiphase outflows that these supernovae drive, comparing our findings with recent theory and observations. These simulations consist of five Large Magellanic Cloud–mass galaxies and six Milky Way-mass progenitors (with a minimum baryonic particle mass of $$m_{\rm b.min} = 7100\,{\rm M}_{\odot }$$). For all galaxies, we calculate the local and galaxy-averaged mass and energy-loading factors from the identified outflows. We also characterize the multiphase morphology and properties of the identified superbubbles, including the ‘shell’ of cool ($$T\lt 10^5$$ K) gas and break out of energetic hot ($$T\gt 10^5$$ K) gas when the shell bursts. We find that these simulations, regardless of redshift, have mass-loading factors and momentum fluxes in the cool gas that largely agree with recent observations. Lastly, we also investigate how methodological choices in measuring outflows can affect loading factors for galactic winds.more » « less
-
Abstract We present self-consistent radiation hydrodynamic simulations of hydrogen reionization performed with arepo-rt complemented by a state-of-the-art galaxy formation model. We examine how photoheating feedback, due to reionization, shapes the galaxies properties. Our fiducial model completes reionization by z ≈ 6 and matches observations of the Ly α forest, the cosmic microwave background electron scattering optical depth, the high-redshift ultraviolet (UV) luminosity function, and stellar mass function. Contrary to previous works, photoheating suppresses star formation rates by more than $$50{{\ \rm per\ cent}}$$ only in haloes less massive than ∼108.4 M⊙ (∼108.8 M⊙) at z = 6 (z = 5), suggesting inefficient photoheating feedback from photons within galaxies. The use of a uniform UV background that heats up the gas at z ≈ 10.7 generates an earlier onset of suppression of star formation compared to our fiducial model. This discrepancy can be mitigated by adopting a UV background model with a more realistic reionization history. In the absence of stellar feedback, photoheating alone is only able to quench haloes less massive than ∼109 M⊙ at z ≳ 5, implying that photoheating feedback is sub-dominant in regulating star formation. In addition, stellar feedback, implemented as a non-local galactic wind scheme in the simulations, weakens the strength of photoheating feedback by reducing the amount of stellar sources. Most importantly, photoheating does not leave observable imprints in the UV luminosity function, stellar mass function, or the cosmic star formation rate density. The feasibility of using these observables to detect imprints of reionization therefore requires further investigation.more » « less
-
null (Ed.)ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt dust radiative transfer code to generate synthetic observations of massive galaxies ($$M_{*}\sim 10^{11}\, \rm {M_{\odot }}$$ at z = 2, hosted by haloes of mass $$M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $$1\, \rm {kpc}$$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.more » « less