skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: A Record Chromophore Density in High‐Entropy Liquids of Two Low‐Melting Perylenes: A New Strategy for Liquid Chromophores
Abstract

Liquid chromophores constitute a rare but intriguing class of molecules that are in high demand for the design of luminescent inks, liquid semiconductors, and solar energy storage materials. The most common way to achieve liquid chromophores involves the introduction of long alkyl chains, which, however, significantly reduces the chromophore density. Here, strategy is presented that allows for the preparation of liquid chromophores with a minimal increase in molecular weight, using the important class of perylenes as an example. Two synergistic effects are harnessed: (1) the judicious positioning of short alkyl substituents, and (2) equimolar mixing, which in unison results in a liquid material. A series of 1‐alkyl perylene derivatives is synthesized and it is found that short ethyl or butyl chains reduce the melting temperature from 278 °C to as little as 70 °C. Then, two low‐melting derivatives are mixed, which results in materials that do not crystallize due to the increased configurational entropy of the system. As a result, liquid chromophores with the lowest reported molecular weight increase compared to the neat chromophore are obtained. The mixing strategy is readily applicable to other π‐conjugated systems and, hence, promises to yield a wide range of low molecular weight liquid chromophores.

 
more » « less
PAR ID:
10462718
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
6
Issue:
4
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The lyotropic properties of alkyl thioglycosides with varying sugar headgroup (lactose, cellobiose, maltose, galactose, or glucose) and alkyl chain length (octyl, decyl, or dodecyl chains) are investigated by surface tensiometry, visual observation, and fluorescence spectroscopy. The results substantiate that the glycosidic S‐linkage confers considerably different solution aggregation behavior on these surfactants relative to their O‐linked counterparts, where the properties of the latter are known. The materials properties of the aggregated structures from the alkyl thioglycosides vary considerably. Micelles are formed by octyl thiocellobioside and all alkyl thiomaltosides. Turbid aggregate solutions are formed by the alkyl thioglucosides and octyl thiogalactoside, whereas the longer chain alkyl thiogalactosides are minimally soluble. Fluorescence spectroscopy of these systems confirms their aggregation in lamellar‐like structures. The alkyl thiocellobiosides and alkyl thiolactosides form hydrogels from these low‐molecular weight materials at concentrations almost an order of magnitude lower than gels using other low‐molecular weight materials. Here, hydrogels form at concentrations <0.3 wt% with some forming hydrogels at concentrations as low as 0.03 wt% from alkyl thiocellobiosides and thiolactosides, with hydrogel properties differing significantly with this slight change in the sugar headgroup. Alkyl thiocellobiosides form a nanofiber network and alkyl thiolactosides form globular hydrogels. Overall, these results clearly document materials properties that can readily be controlled and designed depending on molecular structure.

     
    more » « less
  2. Carbohydrate derived low molecular weight organogelators are interesting compounds with many potential applications. Selective functionalization of the different hydroxyl substituents on d -glucose and d -glucosamine resulted in small molecular gelators. Previously we have found that the C-2 acylated derivatives including esters and carbamates of 4,6- O -benzylidene protected glucose and glucosamine derivatives have shown remarkable applications as molecular gelators. In this research, in order to probe the structural influence of sugar derivatives on molecular self-assembly, we introduced acylation functional groups to the 3-hydroxyl group of 4,6- O -benzylidene acetal protected N -acetyl glucosamine derivatives. A library of fourteen ester derivatives was synthesized and characterized. The ester derivatives typically formed gels in pump oil and aqueous mixtures of dimethyl sulfoxide or ethanol. The resulting gels were characterized using optical microscopy, and rheology, etc. All alkyl ester derivatives were gelators for pump oil. A short chain ester derivative was able to form gels in a few different oils and the corresponding oil water mixtures phase selectively. The compound was also used to trap naproxen sodium and formed a stable co-gel. The controlled release of the drug from the gel to the aqueous phase was analyzed using UV-vis spectroscopy. These results show that the functionalization at the 3-OH position of the N -acetyl glucosamine derivative is a feasible strategy in designing new classes of organogelators. 
    more » « less
  3. Organic electro-optic (EO) materials incorporated into silicon-organic hybrid and plasmonic-organic hybrid devices have enabled new records in EO modulation performance. We report a new series of nonlinear optical chromophores engineered by theory-guided design, utilizing bis(4-dialkylaminophenyl)heteroarylamino donor moieties to greatly enhance molecular hyperpolarizabilities. Hyperpolarizabilities predicted using density functional theory were validated by hyper-Rayleigh scattering measurements, showing strong prediction/experiment agreement and >2-fold advancement in static hyperpolarizability over the best prior chromophores. Electric field poled thin films of these chromophores showed significantly enhanced EO coefficients ( r 33 ) and poling efficiencies ( r 33 / E p ) at low chromophore concentrations compared with state-of-the-art chromophores such as JRD1 . The highest performing blend, containing just 10 wt% of the novel chromophore BTP7 , showed a 12-fold enhancement in poling efficiency per unit concentration vs. JRD1 . Our results suggest that further improvement in chromophore hyperpolarizability is feasible without unacceptable tradeoffs with optical loss or stability. 
    more » « less
  4. This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties. 
    more » « less
  5. Low molecular weight hydrogels are made of small molecules that aggregate via noncovalent interactions. Here, comprehensive characterization of the physical and chemical properties of hydrogels made from thioglycolipids of the disaccharides lactose and cellobiose with simple alkyl chains is reported. While thiolactoside hydrogels are robust, thiocellobioside gels are metastable, precipitating over time into fibrous crystals that can be entangled to create pseudo-hydrogels. Rheology confirms the viscoelastic solid nature of these hydrogels with storage moduli ranging from 10–600 kPa. Additionally, thiolactoside hydrogels are thixotropic which is a desirable property for many potential applications. Freeze-fracture electron microscopy of xerogels shows layers of stacked sheets that are entangled into networks. These structures are unique compared to the fibers or ribbons typically reported for hydrogels. Differential scanning calorimetry provides gel-to-liquid phase transition temperatures ranging from 30 to 80 °C. Prodan fluorescence spectroscopy allows assignment of phase transitions in the gels and other lyotropic phases of high concentration samples. Phase diagrams are estimated for all hydrogels at 1–10 wt% from 5 to ≥ 80 °C. These hydrogels represent a series of interesting materials with unique properties that make them attractive for numerous potential applications. 
    more » « less