skip to main content


Title: An Organic Anode for High Temperature Potassium‐Ion Batteries
Abstract

The wide applications of rechargeable batteries require state‐of‐the‐art batteries that are sustainable (abundant resource), tolerant to high‐temperature operations, and excellent in delivering high capacity and long‐term cycling life. Due to the scarcity and uneven distribution of lithium, it is urgent to develop alternative rechargeable batteries. Herein, an organic compound, azobenzene‐4,4′‐dicarboxylic acid potassium salts (ADAPTS) is developed, with an azo group as the redox center for high performance potassium‐ion batteries (KIBs). The extended π‐conjugated structure in ADAPTS and surface reactions between ADAPTS and K‐ions enable the stable charge/discharge of K‐ion batteries even at high temperatures up to 60 °C. When operated at 50 °C, ADAPTS anode delivers a reversible capacity of 109 mAh g−1at 1C for 400 cycles. A reversible capacity of 77 mAh g−1is retained at 2C for 1000 cycles. At 60 °C, the ADAPTS‐based KIBs deliver a high capacity of 113 mAh g−1with 81% capacity retention at 2C after 80 cycles. The exceptional electrochemical performance demonstrates that ADAPTS is a promising electrode material for high‐temperature KIBs.

 
more » « less
PAR ID:
10462753
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
9
Issue:
2
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Developing fast‐charging, high‐temperature, and sustainable batteries is critical for the large‐scale deployment of energy storage devices in electric vehicles, grid‐scale electrical energy storage, and high temperature regions. Here, a transition metal‐free all‐organic rechargeable potassium battery (RPB) based on abundant and sustainable organic electrode materials (OEMs) and potassium resources for fast‐charging and high‐temperature applications is demonstrated. N‐doped graphene and a 2.8 m potassium hexafluorophosphate (KPF6) in diethylene glycol dimethyl ether (DEGDME) electrolyte are employed to mitigate the dissolution of OEMs, enhance the electrode conductivity, accommodate large volume change, and form stable solid electrolyte interphase in the all‐organic RPB. At room temperature, the RPB delivers a high specific capacity of 188.1 mAh g−1at 50 mA g−1and superior cycle life of 6000 and 50000 cycles at 1 and 5 A g−1, respectively, demonstrating an ultra‐stable and fast‐charging all‐organic battery. The impressive performance at room temperature is extended to high temperatures, where the high‐mass‐loading (6.5 mg cm−2) all‐organic RPB exhibits high‐rate capability up to 2 A g−1and a long lifetime of 500 cycles at 70–100 °C, demonstrating a superb fast‐charging and high‐temperature battery. The cell configuration demonstrated in this work shows great promise for practical applications of sustainable batteries at extreme conditions.

     
    more » « less
  2. Abstract

    Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.

     
    more » « less
  3. Abstract

    Low temperature rechargeable batteries are important to life in cold climates, polar/deep‐sea expeditions, and space explorations. Here, this work reports 3.5–4 V rechargeable lithium/chlorine (Li/Cl2) batteries operating down to −80 °C, employing Li metal negative electrode, a novel carbon dioxide (CO2) activated porous carbon (KJCO2) as the positive electrode, and a high ionic conductivity (≈5–20 mS cm−1from −80 °C to room‐temperature) electrolyte comprised of aluminum chloride (AlCl3), lithium chloride (LiCl), and lithium bis(fluorosulfonyl)imide (LiFSI) in low‐melting‐point (−104.5 °C) thionyl chloride (SOCl2). Between room‐temperature and −80 °C, the Li/Cl2battery delivers up to ≈29 100–4500 mAh g−1first discharge capacity (based on carbon mass) and a 1200–5000 mAh g−1reversible capacity over up to 130 charge–discharge cycles. Mass spectrometry and X‐ray photoelectron spectroscopy probe Cl2trapped in the porous carbon upon LiCl electro‐oxidation during charging. At −80 °C, Cl2/SCl2/S2Cl2generated by electro‐oxidation in the charging step are trapped in porous KJCO2carbon, allowing for reversible reduction to afford a high discharge voltage plateau near ≈4 V with up to ≈1000 mAh g−1capacity for SCl2/S2Cl2reduction and up to ≈4000 mAh g−1capacity at ≈3.1 V plateau for Cl2reduction.

     
    more » « less
  4. Abstract

    Given the high energy density, alkali metals are preferred in rechargeable batteries as anodes, however, with significant limitations such as dendrite growth and volume expansion, leading to poor cycle life and safety concerns. Herein a room‐temperature liquid alloy system is proposed as a possible solution for its self‐recovery property. Full extraction of alkali metal ions from the ternary alloy brings it back to the binary liquid eutectic, and thus enables a self‐healing process of the cracked or pulverized structure during cycling. A half‐cell discharge specific capacity of up to 706.0 mAh g−1in lithium‐ion battery and 222.3 mAh g−1for sodium‐ion battery can be delivered at 0.1C; at a high rate of 5C, a sizable capacity of over 400 mAh g−1for Li and 60 mAh g−1for Na could be retained. Li and Na ion full cells with considerable stability are demonstrated when pairing liquid metal with typical cathode materials, LiFePO4, and P2‐Na2/3[Ni1/3Mn2/3]O2. Remarkable cyclic durability, considerable theoretical capacity utilization, and reasonable rate stability present in this work allow this novel anode system to be a potential candidate for rechargeable alkali‐ion batteries.

     
    more » « less
  5. Abstract

    Rechargeable sodium-ion batteries are receiving intense interest as a promising alternative to lithium-ion batteries, however, the absence of high-performance anode materials limits their further commercialization. Here we prepare cobalt-doped tin disulfide/reduced graphene oxide nanocomposites via a microwave-assisted hydrothermal approach. These nanocomposites maintain a capacity of 636.2 mAh g−1after 120 cycles under a current density of 50 mA g−1, and display a capacity of 328.3 mA h g−1after 1500 cycles under a current density of 2 A g−1. The quantitative capacitive analysis demonstrates that the electrochemical performance of the nanocomposite originates from the combined effects of cobalt and sulfur doping, resulting in the enhanced pseudocapacitive contribution (52.8 to 89.8% at 1 mV s−1) of tin disulfide. This work provides insight into tuning the structure of layered transition metal dichalcogenides via heteroatom doping to develop high-performance anode materials for sodium-ion batteries.

     
    more » « less