skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: A sol–gel polymerization method for creating nanoporous polyimide silsesquioxane nanostructures as soft dielectric materials

A sol–gel polymerization method was developed to make polyimide (PI) silsesquioxane (SSQ) nanoparticles as functional, soft dielectric materials. The surface functionalization of the polymer chain backbone and chain ends of poly(trimellitic anhydride chloride‐co‐4,4′‐methylenedianiline),PMR‐15 resin, withpara‐(chloromethyl)‐phenylethyltrimethoxy silane yielded a novel sol–gel reactive sites functionalized PMR‐silane precursor. Upon base‐catalyzed hydrolysis and condensation of the PMR‐silane precursor, spherical, raspberry‐like PMR‐SSQ nanoparticles were obtained in considerably good yield. Controlling the particle size distribution was attempted upon adjusting the molar ratio between the silane precursor and the base, as well as in the presence of a catalytic amount of silica sols. Particle composition, thermal stability, and morphology were confirmed from Fourier transform infrared, thermogravimetric analysis, and scanning electron microscopy analyses. Nanoparticles, visualized under transmission electron microscopy exhibit a nanoporous structure. The Brunauer–Emmett–Teller analysis confirmed that the average pore dimension is ranged from 2 to 5 nm. The dielectric constant of PMR‐SSQ nanoparticles was as low as 1.95, compared to dielectric constants of 3.05 and 3.13 for PMR‐15 and PMR‐silane, respectively. Thus, the base‐catalyzed sol–gel polymerization of alkoxysilylated PI offers a novel synthetic path to make functional nanoporous PI nanostructures that possess ultralow dielectric constants. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2013,57, 562–571.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part A: Polymer Chemistry
Page Range / eLocation ID:
p. 562-571
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polyimide/silicon dioxide nanocomposites were tested for their dielectric strength against nanofiller concentrations between 0% and 14%. The sol–gel process was used forin situgeneration of silicon dioxide nanoparticles in a polyamic acid host matrix. Spin‐coated and imidized samples with approximately 15  μm in thickness were then subjected to dielectric breakdown measurements in accordance with ASTM standards. Results showed two distinct regimes of dielectric strength. Higher dielectric withstand capability of nearly 275 kV mm−1was exhibited by samples with 0% and 2% silicon dioxide. Higher concentration samples were dielectrically weaker by approximately 45% at 150 kV mm−1. Broken‐down specimens were examined under optical and electron microscopes. An inverse relationship between nanoparticle concentration and breakdown perforation diameter was observed. Hole sizes decreased gradually from 140 to 40  μm as silicon dioxide content increased from 0% to 6% and ultimately settled near 30  μm with higher concentrations. The testing results, examined through failure analysis, were explained by breakdown behaviors and mechanisms at different size scales. The findings from this project, in context with previous works and theories, can help establish connections of dielectric strength, perforation diameter, and nanofiller concentration for future polymer nanocomposite research. POLYM. ENG. SCI., 59:1897–1904, 2019. © 2019 Society of Plastics Engineers

    more » « less
  2. This study introduces a simple and environmentally friendly method to synthesize silica-protein nanocomposite materials using microwave energy to solubilize hydrophobic protein in an aqueous solution of pre-hydrolyzed organo- or fluoro-silane. Sol-gel functionality can be enhanced through biomacromolecule incorporation to tune mechanical properties, surface energy, and biocompatibility. Here, synthetic spider silk protein and organo- and fluoro-silane precursors were dissolved and mixed in weakly acidic aqueous solution using microwave technology. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) images revealed the formation of spherical nanoparticles with sizes ranging from 100 to 500 nm depending, in part, on silane fluoro- or organo-side chain chemistry. The silane-protein interaction in the nanocomposite was assessed through infrared spectroscopy. Deconvoluted ATR-FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) spectra revealed silane chemistry-specific conformational changes in the protein-silane nanocomposites. Relative to microwave-solubilized spider silk protein, the β structure content increased by 14% in the spider silk-organo-silica nanocomposites, but decreased by a net 20% in the spider silk-fluoro-silica nanocomposites. Methods of tuning the secondary structures, and in particular β-sheets that are the cross-linking moieties in spider silks and other self-assembling fibrillar proteins, may provide a unique means to promote protein interactions, favor subsequent epitaxial growth process, and enhance the properties of the protein-silane nanocomposites. 
    more » « less

    The glass transition is a genuine imprint of temperature‐dependent structural relaxation dynamics of backbone chains in amorphous polymers, which can also reflect features of chemical transformations induced in macromolecular architectures. Optimization of thermophysical properties of polymer nanocomposites beyond the state of the art is contingent on strong interfacial bonding between nanofiller particles and host polymer matrix chains that accordingly modifies glass transition characteristics. Contemporary polymer nanocomposite configurations have demonstrated only marginal glass transition temperature shifts utilizing conventional polymer matrix and functionalized nanofiller combinations. We present nanofiller‐contiguous polymer network with aromatic thermosetting copolyester nanocomposites in which carbon nanofillers covalently conjugate with cure advancing crosslinked backbone chains through functional end‐groups of constituent precursor oligomers upon anin situpolymerization reaction.Viathoroughly transformed backbone chain configuration, the polymer nanocomposites demonstrate unprecedented glass transition peak broadening by about 100 °C along with significant temperature upshift of around 80 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 1595–1603

    more » « less
  4. A capacitance increase phenomenon is observed for MoO 3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO 3 electrodes in 5M ZnCl 2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa) x MoO y , is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO 3 accompanied by carbonization of the organic molecules; designated as HT-MoO 3 /C. HT of the precipitate formed in the absence of dopamine in the reaction produced α-MoO 3 , which was used as a reference material in this study (α-MoO 3 -ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO 3 /C and α-MoO 3 -ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO 3 /C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO 3 and h-MoO 3 phases in the structure of HT-MoO 3 /C. The increased specific capacitance delivered by the HT-MoO 3 /C electrode as compared to the α-MoO 3 -ref electrode in 5M ZnCl 2 electrolyte in a −0.25–0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl 2 electrolyte at a scan rate of 2 mV s −1 , the HT-MoO 3 /C electrode shows a second cycle capacitance of 347.6 F g −1 . The higher electrochemical performance of the HT-MoO 3 /C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications. 
    more » « less

    Mechanical properties including the failure behavior of physically assembled gels or physical gels are governed by their network structure. To investigate such behavior, we consider a physical gel system consisting of poly(styrene)‐poly(isoprene)‐poly(styrene)[PS‐PI‐PS] in mineral oil. In these gels, the endblock (PS) molecular weights are not significantly different, whereas, the midblock (PI) molecular weight has been varied such that we can access gels with and without midblock entanglement. Small angle X‐ray scattering data reveals that the gels are composed of collapsed PS aggregates connected by PI chains. The gelation temperature has been found to be a function of the endblock concentration. Tensile tests display stretch‐rate dependent modulus at high strain for the gels with midblock entanglement. Creep failure behavior has also been found to be influenced by the entanglement. Fracture experiments with predefined cracks show that the energy release rate scales linearly with the crack‐tip velocity for all gels considered here. In addition, increase of midblock chain length resulted in higher viscous dissipation leading to a higher energy release rate. The results provide an insight into how midblock entanglement can possibly affect the mechanical properties of physically assembled triblock copolymer gels in a midblock selective solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1014–1026

    more » « less