skip to main content

Title: Realization of a Type‐II Nodal‐Line Semimetal in Mg 3 Bi 2

Nodal‐line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type‐I and type‐II Weyl semimetals, there are two types of NLSs. The type‐I NLS phase has been proposed and realized in many compounds, whereas the exotic type‐II NLS phase that strongly violates Lorentz symmetry has remained elusive. First‐principles calculations show that Mg3Bi2is a material candidate for the type‐II NLS. The band crossing is close to the Fermi level and exhibits the type‐II nature of the nodal line in this material. Spin–orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2that yields the type‐II nodal line. Based on this prediction, Mg3Bi2single crystals are synthesized and the presence of the type‐II nodal lines in the material is confirmed. The angle‐resolved photoemission spectroscopy measurements agree well with the first‐principles results below the Fermi level and thus strongly suggest Mg3Bi2as an ideal material platform for studying the as‐yet unstudied properties of type‐II nodal‐line semimetals.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    How strong correlations and topology interplay is a topic of great current interest. In this perspective paper, we focus on correlation-driven gapless phases. We take the time-reversal symmetric Weyl semimetal as an example because it is expected to have clear (albeit nonquantized) topological signatures in the Hall response and because the first strongly correlated representative, the noncentrosymmetric Weyl–Kondo semimetal Ce3Bi4Pd3, has recently been discovered. We summarize its key characteristics and use them to construct a prototype Weyl–Kondo semimetal temperature-magnetic field phase diagram. This allows for a substantiated assessment of other Weyl–Kondo semimetal candidate materials. We also put forward scaling plots of the intrinsic Berry-curvature-induced Hall response vs the inverse Weyl velocity—a measure of correlation strength, and vs the inverse charge carrier concentration—a measure of the proximity of Weyl nodes to the Fermi level. They suggest that the topological Hall response is maximized by strong correlations and small carrier concentrations. We hope that our work will guide the search for new Weyl–Kondo semimetals and correlated topological semimetals in general, and also trigger new theoretical work.

    more » « less
  2. Abstract

    In type-II Weyl semimetals (WSMs), the tilting of the Weyl cones leads to the coexistence of electron and hole pockets that touch at the Weyl nodes. These electrons and holes experience the Berry curvature generated by the Weyl nodes, leading to an anomalous Hall effect that is highly sensitive to the Fermi level position. Here we have identified field-induced ferromagnetic MnBi2-xSbxTe4as an ideal type-II WSM with a single pair of Weyl nodes. By employing a combination of quantum oscillations and high-field Hall measurements, we have resolved the evolution of Fermi-surface sections as the Fermi level is tuned across the charge neutrality point, precisely matching the band structure of an ideal type-II WSM. Furthermore, the anomalous Hall conductivity exhibits a heartbeat-like behavior as the Fermi level is tuned across the Weyl nodes, a feature of type-II WSMs that was long predicted by theory. Our work uncovers a large free carrier contribution to the anomalous Hall effect resulting from the unique interplay between the Fermi surface and diverging Berry curvature in magnetic type-II WSMs.

    more » « less
  3. Abstract

    This study presents a thorough analysis of the electronic structures of the TaPxAs1−xseries of compounds, which are of significant interest due to their potential as topological materials. Using a combination of first principles and Wannier‐based tight‐binding methods, this study investigates both the bulk and surface electronic structures of the compounds for varying compositions (x = 0, 0.25, 0.50, 0.75, 1), with a focus on their topological properties. By using chirality analysis, (111) surface electronic structure analysis, and surface Fermi arcs analysis, it is established that the TaPxAs1−xcompounds exhibit topologically nontrivial behavior, characterized as Weyl semimetals (WSMs). The effect of spin–orbit coupling (SOC) on the topological properties of the compounds is further studied. In the absence of SOC, the compounds exhibit linearly dispersive fourfold degenerate points in the first Brillouin zone (FBZ) resembling Dirac semimetals. However, the introduction of SOC induces a phase transition to WSM states, with the number and position of Weyl points (WPs) varying depending on the composition of the alloy. For example, TaP has 12 WPs in the FBZ. The findings provide novel insights into the electronic properties of TaPxAs1−xcompounds and their potential implications for the development of topological materials for various technological applications.

    more » « less
  4. Abstract

    We report a transport study on Pd3In7which displays multiple Dirac type-II nodes in its electronic dispersion. Pd3In7is characterized by low residual resistivities and high mobilities, which are consistent with Dirac-like quasiparticles. For an applied magnetic field (μ0H) having a non-zero component along the electrical current, we find a large, positive, and linear inμ0Hlongitudinal magnetoresistivity (LMR). The sign of the LMR and its linear dependence deviate from the behavior reported for the chiral-anomaly-driven LMR in Weyl semimetals. Interestingly, such anomalous LMR is consistent with predictions for the role of the anomaly in type-II Weyl semimetals. In contrast, the transverse or conventional magnetoresistivity (CMR for electric fieldsEμ0H) is large and positive, increasing by 103−104% as a function ofμ0Hwhile following an anomalous, angle-dependent power law$${\rho }_{{{{\rm{xx}}}}}\propto {({\mu }_{0}H)}^{n}$$ρxx(μ0H)nwithn(θ) ≤ 1. The order of magnitude of the CMR, and its anomalous power-law, is explained in terms of uncompensated electron and hole-like Fermi surfaces characterized by anisotropic carrier scattering likely due to the lack of Lorentz invariance.

    more » « less
  5. Abstract

    Low‐frequency current fluctuations, i.e., electronic noise, in quasi‐1D (TaSe4)2I Weyl semimetal nanoribbons are discussed. It is found that the noise spectral density is of the 1/ftype and scales with the square of the current,SI ~ I2(fis the frequency). The noise spectral density increases by almost an order of magnitude and develops Lorentzian features near the temperatureT ≈ 225 K. These spectral changes are attributed to the charge‐density‐wave phase transition even though the temperature of the noise maximum deviates from the reported Peierls transition temperature in bulk (TaSe4)2I crystals. The noise level, normalized by the channel area, in these Weyl semimetal nanoribbons is surprisingly low, ≈10−9 µm2Hz−1atf = 10 Hz, when measured below and above the Peierls transition temperature. The obtained results shed light on the specifics of electron transport in quasi‐1D topological Weyl semimetals and can be important for their proposed applications as downscaled interconnects.

    more » « less