Abstract Emissive covalent organic frameworks (COFs) have recently emerged as next‐generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so‐called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well‐defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D‐COF (COF‐SMU‐1) featuring free uncondensed aldehyde groups is reported. In particular,COF‐SMU‐1features a dual‐pore architecture with an overallbexnet topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics ofCOF‐SMU‐1are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water‐harvesting properties ofCOF‐SMU‐1are revealed using FT‐IR and water sorption studies.The findings will not only lead to in‐depth understanding of structure–property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid‐state lighting and water harvesting.
more »
« less
Opportunities of Covalent Organic Frameworks for Advanced Applications
Abstract Covalent organic frameworks (COFs) are an emerging class of functional nanostructures with intriguing properties, due to their unprecedented combination of high crystallinity, tunable pore size, large surface area, and unique molecular architecture. The range of properties characterized in COFs has rapidly expanded to include those of interest for numerous applications ranging from energy to environment. Here, a background overview is provided, consisting of a brief introduction of porous materials and the design feature of COFs. Then, recent advancements of COFs as a designer platform for a plethora of applications are emphasized together with discussions about the strategies and principles involved. Finally, challenges remaining for this type material for real applications are outlined.
more »
« less
- Award ID(s):
- 1706025
- PAR ID:
- 10462852
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers that have attracted significant attention due to their tunable properties and structural robustness. As a result, COFs with luminescent properties are of great interest for fields such as chemical sensing, solid-state light emitters, photocatalysis, and optoelectronics. However, the bottom-up synthesis of luminescent COF systems remains a challenge in the field due to an abundance of competing non-radiative pathways, including phenomena such as aggregate caused quenching (ACQ). To overcome these obstacles, there has been a burgeoning investigation into the luminescent and photophysical properties of COFs. This review will highlight methods used to fabricate luminescent COFs and discuss the factors that are critical for their production. A collection of known luminescent COF systems will be featured. In addition, the ability to utilize the photophysical properties of COFs for applications related to photocatalysis, solid-state light emitters, and chemical sensing will be addressed. An outlook will address the current progress and remaining challenges facing the field to ultimately expand the scope of their applications.more » « less
-
null (Ed.)Covalent organic frameworks (COFs) are an advanced class of crystalline porous polymers that have garnered significant interest due to their tunable properties and robust molecular architectures. As a result, COFs with energy-storage properties are of particular interest to the field of rechargeable battery electrode materials. However, investigation into COFs as candidates for energy-storage materials is still in its infancy. This review will highlight methods used to fabricate COFs used as electrode materials and discuss the factors that prove critical for their production. A collection of known COF-based energy-storage systems will be featured. In addition, the ability to utilize the storage properties of COFs for systems beyond traditional Li-ion batteries will be addressed. An outlook will address the current progress and remaining challenges facing the field to ultimately expand the scope of their applications.more » « less
-
Abstract The first synthesis and comprehensive characterization of two vinyl tetrazine‐linked covalent organic frameworks (COF), TA‐COF‐1 and TA‐COF‐2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2g−1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light‐driven applications. These advantages enable TA‐COFs to act as reusable metal‐free photocatalysts in the arylboronic acids oxidation and light‐induced coupling of benzylamines. In addition, these TA‐COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3vapor. Further, the TA‐COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA‐COFs can also degrade 5‐nitro‐1,2,4‐triazol‐3‐one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight‐driven photocatalytic process; thus, revealing dual functionality of the protonated TA‐COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF‐based materials, facilitating advances in catalysis, sensing, and other related fields.more » « less
-
Abstract Tailor‐made materials featuring large tunability in their thermal transport properties are highly sought‐after for diverse applications. However, achieving `user‐defined’ thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure‐property relationships, which has proven to be challenging. Herein, large‐scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure‐property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data‐driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m−1K−1) to exceptionally high (≈50 W m−1K−1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon–carbon linkages with densities greater than 500 kg m−3, nominal void fractions (in the range of ≈0.6–0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities.more » « less