skip to main content


This content will become publicly available on September 5, 2024

Title: Utilizing the Hofmeister Effect to Induce Hydrogelation of Nonionic Supramolecular Polymers into a Therapeutic Depot
Abstract

Nonionic hydrogels are of particular interest for long‐term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt‐triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self‐assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN‐38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self‐assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our1H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water‐ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN‐38 hydrogelator that acted potently against cancer cells.

 
more » « less
NSF-PAR ID:
10462864
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
135
Issue:
43
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nonionic hydrogels are of particular interest for long‐term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt‐triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self‐assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN‐38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self‐assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our1H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water‐ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN‐38 hydrogelator that acted potently against cancer cells.

     
    more » « less
  2. null (Ed.)
    Supramolecular hydrogels formed by noncovalent self-assembly of low molecular weight (LMW) agents are promising next-generation biomaterials. Thixotropic shear response and mechanical stability are two emergent properties of hydrogels that are critical for biomedical applications including drug delivery and tissue engineering in which injection of the hydrogel will be necessary. Herein, we demonstrate that the emergent thixotropic properties of supramolecular phenylalanine-derived hydrogels are dependent on the conditions in which they are formulated. Specifically, hydrogels formed from fluorenylmethoxycarbonyl (Fmoc) modified phenylalanine derivatives, 3-fluorophenylalanine (Fmoc-3F-Phe) and pentafluorophenylalanine (Fmoc-F5-Phe), were characterized as a function of gelation conditions to examine how shear response and mechanical stability properties correlate to mode of gelation. Two distinct methods of gelation were compared. First, spontaneous self-assembly and gelation was triggered by a solvent exchange method in which a concentrated solution of the gelator in dimethylsulfoxide was diluted in water. Second, gelation was promoted by dissolution of the gelator in water at basic pH followed by gradual pH adjustment from basic to mildly acidic by the hydrolysis of glucono-delta-lactone. Hydrogels formed under solvent exchange conditions were mechanically unstable and poorly shear-responsive whereas hydrogels formed by gradual acidification were temporally stable and had highly shear-responsive viscoelastic character. These studies confirm that gelation environment and mechanism have a significant influence on the emergent properties of supramolecular hydrogels and offer insight into how gelation conditions can be used to tune hydrogel properties for specific applications. 
    more » « less
  3. Rationale

    Coordinatively driven self‐assembly of transition metal ions and bidentate ligands gives rise to organometallic complexes that usually contain superimposed isobars, isomers, and conformers. In this study, the double dispersion ability of ion mobility mass spectrometry (IM‐MS) was used to provide a comprehensive structural characterization of the self‐assembled supramolecular complexes by their mass and charge, revealed by the MS event, and their shape and collision cross‐section (Ω), revealed by the IM event.

    Methods

    Self‐assembled complexes were synthesized by reacting a bis(terpyridine) ligand exhibiting a 60odihedral angle between the two ligating terpyridine sites (T) with divalent Zn, Ni, Cd, or Fe. The products were isolated as (Metal2+[T])n(PF6)2nsalts and analyzed using IM‐MS after electrospray ionization (ESI) which produced several charge states from eachn‐mer, depending on the number of PF6ˉ anions lost upon ESI. Experimental Ω data, derived using IM‐MS, and computational Ω predictions were used to elucidate the size and architecture of the complexes.

    Results

    Only macrocyclic dimers, trimers, and tetramers were observed with Cd2+, whereas Zn2+formed the same plus hexameric complexes. These two metals led to the simplest product distributions and no linear isomers. In sharp contrast, Ni2+and Fe2+formed all possible ring sizes from dimer to hexamer as well as various linear isomers. The experimental and theoretical Ω data indicated rather planar macrocyclic geometries for the dimers and trimers, twisted 3D architectures for the larger rings, and substantially larger sizes with spiral conformation for the linear congeners. Adding PF6ˉ to the same complex was found to mainly cause size contraction due to new stabilizing anion–cation interactions.

    Conclusions

    Complete structural identification could be accomplished using ESI‐IM‐MS. Our results affirm that self‐assembly with Cd2+and Zn2+proceeds through reversible equilibria that generate the thermodynamically most stable structures, encompassing exclusively macrocyclic architectures that readily accommodate the 60oligand used. In contrast, complexation with Ni2+and Fe2+, which form stronger coordinative bonds, proceeds through kinetic control, leading to more complex mixtures and kinetically trapped less stable architectures, such as macrocyclic pentamers and linear isomers.

     
    more » « less
  4. The inception and development of supramolecular chemistry have provided a vast library of supramolecular structures and materials for improved practice of medicine. In the context of therapeutic delivery, while supramolecular nanostructures offer a wide variety of morphologies as drug carriers for optimized targeting and controlled release, concerns are often raised as to how their morphological stability and structural integrity impact their in vivo performance. After intravenous (i.v.) administration, the intrinsic reversible and dynamic feature of supramolecular assemblies may lead them to dissociate upon plasma dilution to a concentration below their critical micellization concentration (CMC). As such, CMC represents an important characteristic for supramolecular biomaterials design, but its pharmaceutical role remains elusive. Here, we report the design of a series of self-assembling prodrugs (SAPDs) that spontaneously associate in aqueous solution into supramolecular polymers (SPs) with varying CMCs. Two hydrophobic camptothecin (CPT) molecules were conjugated onto oligoethylene-glycol (OEG)-decorated segments with various OEG repeat numbers (2, 4, 6, 8). Our studies show that the lower the CMC, the lower the maximum tolerated dose (MTD) in rodents. When administrated at the same dosage of 10 mg/kg (CPT equivalent), SAPD 1, the one with the lowest CMC, shows the best efficacy in tumor suppression. These observations can be explained by the circulation and dissociation of SAPD SPs and the difference in molecular and supramolecular distribution between excretion and organ uptake. We believe these findings offer important insight into the role of supramolecular stability in determining their therapeutic index and in vivo efficacy.

     
    more » « less
  5. Self-assembled lipid tubules are unique supramolecular structures in cell functions. Lipid tubules that are engineered in vitro are of great interest for technological applications ranging from the templated synthesis of nanomaterials to drug delivery. Herein, we report a study to create long lipid tubules from a mono-unsaturated lipid, 1-stearoyl-2-oleoyl- sn-glycero -3-phosphocholine (SOPC), due to the effect of calcium ions. We found that calcium ions at mM concentrations promote the self-assembly of SOPC lipids into inter-connected hollow lipid tubes that are μm thick and as long as a few millimeters. Higher calcium concentration leads to an increase in the numbers of lipid tubules formed, but has little effect on tubule diameter. Calcium ions also stabilize lipid tubules, which break up upon the removal of ions. We showed that the lipid tubule-promoting effect is general for divalent ions. We were able to vary the morphology of lipid tubules from thin tube to “strings of pearls” structures or increase the tubule thickness by mixing SOPC with other lipids of different spontaneous curvature effects. Our results reveal that the divalent charges of calcium ions and the asymmetric mono-unsaturated structure of SOPC acyl chains act in combination to cause the formation of lipid tubules. 
    more » « less