skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Hawaiian picture‐winged Drosophila exhibit adaptive population divergence along a narrow climatic gradient on Hawaii Island
Abstract

Anthropogenic influences on global processes and climatic conditions are increasingly affecting ecosystems throughout the world.

Hawaii Island’s native ecosystems are well studied and local long‐term climatic trends well documented, making these ecosystems ideal for evaluating how native taxa may respond to a warming environment.

This study documents adaptive divergence of populations of a Hawaiian picture‐wingedDrosophila,D. sproati,that are separated by only 7 km and 365 m in elevation.

Representative laboratory populations show divergent behavioral and physiological responses to an experimental low‐intensity increase in ambient temperature during maturation. The significant interaction of source population by temperature treatment for behavioral and physiological measurements indicates differential adaptation to temperature for the two populations.

Significant differences in gene expression among males were mostly explained by the source population, with eleven genes in males also showing a significant interaction of source population by temperature treatment.

The combined behavior, physiology, and gene expression differences between populations illustrate the potential for local adaptation to occur over a fine spatial scale and exemplify nuanced response to climate change.

 
more » « less
NSF-PAR ID:
10462903
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
5
ISSN:
2045-7758
Page Range / eLocation ID:
p. 2436-2448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Invasive species have the ability to rapidly adapt in the new regions where they are introduced. Classic evolutionary theory predicts that the accumulation of genetic differences over time in allopatric isolation may lead to reproductive incompatibilities resulting in decreases in reproductive success and, eventually, to speciation. However, experimental evidence for this theoretical prediction in the context of invasive species is lacking. We aimed to test for the potential of allopatry to determine reproductive success of invasive plants, by experimentally admixing genotypes from six different native and non‐native regions ofCentaurea solstitialis, an invasive forb for which preliminary studies have detected some degree of reproductive isolation between one native and non‐native region.

    We grew plants under common garden conditions and outcrossed individuals originating from different source populations in the native and introduced range to evaluate reproductive success in terms of seed to ovule ratio produced. We also assessed geographical and genetic isolation amongC.solstitialisregions as a potential driving factor of reproductive success.

    Experimental admixture generated mixed fitness effects, including significant increases, decreases and no differences in reproductive success as compared to crosses within population (control).Centaurea solstitialisinvasive populations in the Americas generated preponderantly negative fitness interactions, regardless of the pollen source, suggesting selection against immigrants and reinforcement. Other non‐native populations (Australia) as well as individuals from the native range of Spain demonstrated an increase in fitness for between‐region crosses, indicating inbreeding. These differences show an asymmetrical response to inter‐regional gene flow, but no evidence of isolation by distance.

    Synthesis. The speed of adaptation and the accumulation of reproductive incompatibilities among allopatric populations of invasive species might be more rapid than previously assumed. Our data show a global mosaic of reproductive outputs, showcasing an array of evolutionary processes unfolding during colonization at large biogeographical scales.

     
    more » « less
  2. Abstract

    Population‐scale responses of key ecological traits to local environmental conditions provide insight into their adaptive potential. In species with temperature‐dependent sex determination (TSD), short‐term, individual developmental responses to the incubation environment have long‐term consequences for populations.

    We took a model‐based approach to study within‐ and among‐population variation in the physiological components of TSD in 12 populations of painted turtles (Chrysemys picta). We used laboratory and field incubation data to quantify variation in thermal reaction norms at both population and clutch scales, focusing on the pivotal temperature that produces a 1:1 sex ratio (P) and the transitional range of incubation temperatures (TRTs) that produce mixed sex ratios.

    Defying theoretical expectations, among‐population variation inPwas not convincingly explained by geography or local thermal conditions. However, within some populations,Pvaried by >5°C at the clutch scale, indicating that the temperature sensitivity of gonadal differentiation can vary substantially among individual nesting females. In addition, the TRT was wider at lower latitudes, suggesting responsiveness to local incubation conditions.

    Our results provide a potential explanation for discrepancies observed between constant‐temperature experimental results and outcomes of fluctuating incubation conditions experienced in natural nests, exposing important knowledge gaps in our understanding of local adaptation in TSD and identifying shortcomings of traditional laboratory studies. Understanding individual variation and the timing of gonadal differentiation is likely to be far more useful in understanding local adaptation than previously acknowledged.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    Long‐term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment‐dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry‐down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up‐regulation of stress‐related and down‐regulation of growth‐related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co‐expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment‐dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses ofP. repenspopulations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.

     
    more » « less
  4. Abstract

    Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non‐native forest pestLymantria dispar dispar(L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate‐related performance among populations.

     
    more » « less
  5. Abstract

    Selection pressures along climate gradients give rise to predictable variation in plant functional traits of individual species suggestive of local adaptation. Species whose ranges include winter rainfall, Mediterranean climates, or other strongly seasonal climates, may be exposed to divergent selection pressures at different ends of seasonality gradients.

    Here, we evaluate how rainfall seasonality in conjunction with other key climatic variables impacts patterns of trait variation inPelargonium scabrum, a woody shrub from the Greater Cape Floristic Region of South Africa. This biodiversity hotspot encompasses a Mediterranean climate (wet winters and hot, dry summers) and displays steep gradients in temperature and water availability.

    We used Bayesian regression models to evaluate leaf trait–trait and trait–climate relationships among 26 populations. Models included rainfall seasonality and its interaction with other climate variables (mean annual temperature, mean annual precipitation and potential evapotranspiration) as predictors to test for the impact of climate variation on three leaf traits: size, dissection and leaf mass per area (LMA). We evaluated model explanatory power by calculating BayesianR2values, and predictive power via leave‐one‐out cross‐validation.

    Trait–trait associations were modulated by rainfall seasonality, including a reversal in the relationship between leaf size and dissection depending on the proportion of rain received in winter. Trait–climate models were improved by including rainfall seasonality as a predictor for both explanatory and predictive power. For leaf dissection and LMA, we detected significant interactions between rainfall seasonality and other environmental variables, leading to reversals in the relationships between these traits and the three environmental variables depending on the proportion of winter rainfall.

    Differences in the timing of rainfall, coupled with strong differences in the covariation of climate variables, impose divergent selection pressures onP. scabrumpopulations resulting in divergence of trait values, trait integration and responses to climate gradients. These patterns are consistent with local adaptation ofP. scabrumpopulations mediated by the interactions between temperature and the amount and timing of rainfall. Species arrayed along broad climate gradients represent an excellent opportunity for investigating patterns of trait variation and abundances and distributions of species in relation to future changes in climate.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less