skip to main content


Title: Tomography of Southern California Via Bayesian Joint Inversion of Rayleigh Wave Ellipticity and Phase Velocity From Ambient Noise Cross‐Correlations
Abstract

A self‐consistent regional‐scale seismic velocity model with resolution from seismogenic depth to the surface is crucial for seismic hazard assessment. Though Southern California is the most seismically imaged region in the world, techniques with high near‐surface sensitivity have been applied only in disparate local areas and have not been incorporated into a unified model with deeper resolution. In the present work, we obtain isotropic values for Rayleigh wave phase velocity and ellipticity in Southern California by cross‐correlating daily time series from the year 2015 across 315 regional stations in period ranges 6 to 18 s. Leveraging the complementary sensitivity of the two Rayleigh wave data sets, we combine H/V and phase velocity measurements to determine a new 3‐D shear velocity model in a Bayesian joint inversion framework. The new model has greatly improved shallow resolution compared to the Southern California Earthquake Center CVMS4.26 reference model. Well‐known large‐scale features common to previous studies are resolved, including velocity contrasts across the San Andreas, San Jacinto, Garlock, and Elsinore faults, midcrustal high‐velocity structure beneath the Mojave Desert, and shallow Moho beneath the Salton Trough. Other prominent features that have previously only been imaged in focused local studies include the correct sedimentary thickness of the southern Central Valley, fold structure of the Ventura and Oak Ridge Anticlines, and velocity contrast across the Newport‐Inglewood fault. The new shallow structure will greatly impact simulation‐based studies of seismic hazard, especially in the near‐surface low‐velocity zones beneath densely populated areas like the Los Angeles, San Bernardino, and Ventura Basins.

 
more » « less
NSF-PAR ID:
10462916
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
123
Issue:
11
ISSN:
2169-9313
Page Range / eLocation ID:
p. 9933-9949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Near‐surface seismic velocity structure plays a critical role in ground motion amplification during large earthquakes. In particular, the local Vp/Vs ratio strongly influences the amplitude of Rayleigh waves. Previous studies have separately imaged 3D seismic velocity and Vp/Vs ratio at seismogenic depth, but lack regional coverage and/or fail to constrain the shallowest structure. Here, we combine three datasets with complementary sensitivity in a Bayesian joint inversion for shallow crustal shear velocity and near‐surface Vp/Vs ratio across Southern California. Receiver functions–including with an apparent delayed initial peak in sedimentary basins, and long considered a nuisance in receiver function imaging studies–highly correlate with short‐period Rayleigh wave ellipticity measurements and require the inclusion of a Vp/Vs parameter. The updated model includes near‐surface low shear velocity more in line with geotechnical layer estimates, and generally lower than expected Vp/Vs outside the basins suggesting widespread shallow fracturing and/or groundwater undersaturation.

     
    more » « less
  2. Abstract

    The Formosa array, with 137 broadband seismometers and ∼5 km station spacing, was deployed recently in Northern Taiwan. Here by using eight months of continuous ambient noise records, we construct the first high‐resolution three‐dimensional (3‐D) shear wave velocity model of the crust in the area. We first calculate multi‐component cross‐correlations to extract robust Rayleigh wave signals. We then determine phase velocity maps between 3 and 10 s periods using Eikonal tomography and measure Rayleigh wave ellipticity at each station location between 2 and 13 s periods. For each location, we jointly invert the two types of Rayleigh wave measurements with a Bayesian‐based inversion method for a one‐dimensional shear wave velocity model. All piecewise continuous one‐dimensional models are then used to construct the final 3‐D model. Our 3‐D model reveals upper crustal structures that correlate well with surface geological features. Near the surface, the model delineates the low‐velocity Taipei and Ilan Basins from the adjacent fast‐velocity mountainous areas, with basin geometries consistent with the results of previous geophysical exploration and geological studies. At a greater depth, low velocity anomalies are observed associated with the Linkou Tableland, Tatun Volcano Group, and a possible dyke intrusion beneath the Southern Ilan Basin. The model also provides new geometrical constraints on the major active fault systems in the area, which are important to understand the basin formation, orogeny dynamics, and regional seismic hazard. The new 3‐D shear wave velocity model allows a comprehensive investigation of shallow geologic structures in the Northern Taiwan.

     
    more » « less
  3. Abstract

    We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity.

     
    more » « less
  4. Abstract We construct a 3D shear velocity model of the Salt Lake Valley using Rayleigh waves excited by the 31 March 2020 Mw 6.5 central Idaho earthquake recorded on a 168-station temporary nodal geophone network and the 49-station permanent regional network. The temporary array—deployed in response to the March 18 Mw 5.7 Magna earthquake—serendipitously recorded clear surface waves between 10 and 20 s period from the Idaho event at ∼500 km epicentral distance, from which we measure both Rayleigh wave phase velocity and ellipticity (H/V ratio). In addition, we employ multicomponent earthquake coda cross correlation to extend the measurements down to 5 s period. Because Rayleigh wave ellipticity features outstanding shallow sensitivity, we invert for a 3D upper crust VS model of the Salt Lake Valley. Our model shows basin structure in general agreement with and complements the current Community Velocity Model, which is mostly constrained by borehole and gravity measurements. Our model thus provides critical information for future earthquake hazard assessment studies, which require detailed shallow velocity structure. 
    more » « less
  5. Abstract

    We image the shallow seismic structure across the Southern San Andreas Fault (SSAF) using signals from freight trains and trucks recorded by a dense nodal array, with a linear component perpendicular to SSAF and two 2D subarrays centered on the Banning Fault and Mission Creek Fault (MCF). Particle motion analysis in the frequency band 2–5 Hz shows that the examined traffic sources can be approximated as moving single‐ or multi‐point sources that primarily induce Rayleigh waves. Using several techniques, we resolve strong lateral variations of Rayleigh wave velocities andQ‐values across the SSAF, including 35% velocity reduction across MCF toward the northeast and strong attenuation around the two fault strands. We further resolve 10% mass density reduction and 45% shear modulus decrease across the MCF. These findings suggest that the MCF is currently the main strand of the SSAF in the area with important implications for seismic hazard assessments.

     
    more » « less