skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structuring and Connecting 2D and 3D Space Using Linear Combinations
Developing a rich understanding of linear combinations is key to understanding linear algebra. In this paper, I explore the rich connections students make between the geometric and numeric representations of linear combinations through playing and analyzing a video game. I look at population of students who have never taken linear algebra before and analyze how they structure space using the video game, Vector Unknown, as a realistic starting point. I detail and analyze this activity including the activities that transition them from 2D to 3D space.  more » « less
Award ID(s):
1712524
PAR ID:
10463013
Author(s) / Creator(s):
Editor(s):
Cook, Samuel; Katz, Brian; Moore-Russo, Deborah
Date Published:
Journal Name:
Proceedings of the Annual Conference on Research in Undergraduate Mathematics Education
ISSN:
2474-9346
Page Range / eLocation ID:
412 - 419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Karunakaran, S.; Higgins, A. (Ed.)
    Understanding linear combinations is at the core of linear algebra and impacts their understanding of basis and linear transformations. This research will focus on how students understand linear combinations after playing a video game created to help students link the algebraic and geometric representations of linear combinations. I found that having students reflect upon the game and create their own 3D version of the game illustrated which elements of 2D understanding could be translated into 3D. Also, students' creation of easy, medium, and hard levels provided insight into how students progressively structure space. 
    more » « less
  2. Karunakaran, S.; Reed, Z.; Higgins, A. (Ed.)
    We present results of a grounded analysis of individual interviews in which students play Vector Unknown - a video game designed to support students who are taking their first semester of linear algebra. We categorized strategies students employed while playing the game. These strategies range from less-anticipatory button-pushing to more sophisticated strategies based on approximating solutions and choosing vectors based on their direction. We also found that students focus on numeric and geometric aspects of the game interface, which provides additional insight into their strategies. These results have informed revisions to the game and also inform our team's plan for incorporating the game into classroom instruction. 
    more » « less
  3. Linear algebra instruction is an essential competency that is necessary for success in multiple engineering disciplines. Research in realistic mathematics education and the development of an empirically tested curriculum in inquiry oriented practices for teaching linear algebra helps improve the ability of instructors to teach the content via multiple lenses and modes. While there have been good instructional materials and strategies developed to apply inquiry oriented instruction for linear algebra, students struggle to apply and connect the different modes. Game based learning provides a platform to creatively include multiple modes and strategies via a fun and engaging manner. In this paper, we present we discuss the addition of game-based learning elements into an existing curriculum that teaches undergraduate linear algebra via an inquiry-oriented pedagogy. The aim of this paper is to discuss the game design strategies used in connecting game based learning to inquiry oriented methods. 
    more » « less
  4. Linear algebra instruction is an essential competency that is necessary for success in multiple engineering disciplines. Research in realistic mathematics education and the development of an empirically tested curriculum in inquiry-oriented practices for teaching linear algebra helps improve the ability of instructors to teach the content via multiple lenses and modes. While there have been good instructional materials and strategies developed to apply inquiry-oriented instruction for linear algebra, students struggle to apply and connect the different modes. Game-based learning provides a platform to creatively include multiple modes and strategies in a fun and engaging manner. In this paper, we present we discuss the addition of game-based learning elements into an existing curriculum that teaches undergraduate linear algebra via an inquiry-oriented pedagogy. The aim of this paper is to discuss the game design strategies used in connecting game based learning to inquiry oriented methods. 
    more » « less
  5. Students often perform arithmetic using rigid problem-solving strategies that involve left-to-right-calculations. However, as students progress from arithmetic to algebra, entrenchment in rigid problem-solving strategies can negatively impact performance as students experience varied problem representations that sometimes conflict with the order of precedence (the order of operations). Research has shown that the syntactic structure of problems, and students’ perceptual processes, are involved in mathematics performance and developing fluency with precedence. We examined 837 U.S. middle schoolers’ propensity for precedence errors on six problems in an online mathematics game. We included an algebra knowledge assessment, math anxiety measure, and a perceptual math equivalence task measuring quick detection of equivalent expressions as predictors of students’ precedence errors. We found that students made more precedence errors when the leftmost operation was invalid (addition followed by multiplication). Individual difference analyses revealed that students varied in propensity for precedence errors, which was better predicted by students’ performance on the perceptual math equivalence task than by their algebra knowledge or math anxiety. Students’ performance on the perceptual task and interactive game provide rich insights into their real-time understanding of precedence and the role of perceptual processes in equation solving. 
    more » « less