skip to main content


Title: Smart Glasses for Supporting Distributed Care Work: Systematic Review
Background Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings. Objective The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals’ use of smart glasses in practice. Methods We conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis. Results All of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges. Conclusions User-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals’ needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes.  more » « less
Award ID(s):
1948292
PAR ID:
10463041
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
JMIR Medical Informatics
Volume:
11
ISSN:
2291-9694
Page Range / eLocation ID:
e44161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective

    This study aims to investigate key considerations and critical factors that influence the implementation and adoption of smart glasses in fast-paced medical settings such as emergency medical services (EMS).

    Materials and Methods

    We employed a sociotechnical theoretical framework and conducted a set of participatory design workshops with 15 EMS providers to elicit their opinions and concerns about using smart glasses in real practice.

    Results

    Smart glasses were recognized as a useful tool to improve EMS workflow given their hands-free nature and capability of processing and capturing various patient data. Out of the 8 dimensions of the sociotechnical model, we found that hardware and software, human-computer interface, workflow, and external rules and regulations were cited as the major factors that could influence the adoption of this novel technology. EMS participants highlighted several key requirements for the successful implementation of smart glasses in the EMS context, such as durable devices, easy-to-use and minimal interface design, seamless integration with existing systems and workflow, and secure data management.

    Discussion

    Applications of the sociotechnical model allowed us to identify a range of factors, including not only technical aspects, but also social, organizational, and human factors, that impact the implementation and uptake of smart glasses in EMS. Our work informs design implications for smart glass applications to fulfill EMS providers’ needs.

    Conclusion

    The successful implementation of smart glasses in EMS and other dynamic healthcare settings needs careful consideration of sociotechnical issues and close collaboration between different stakeholders.

     
    more » « less
  2. Background Smart glasses have been gaining momentum as a novel technology because of their advantages in enabling hands-free operation and see-what-I-see remote consultation. Researchers have primarily evaluated this technology in hospital settings; however, limited research has investigated its application in prehospital operations. Objective The aim of this study is to understand the potential of smart glasses to support the work practices of prehospital providers, such as emergency medical services (EMS) personnel. Methods We conducted semistructured interviews with 13 EMS providers recruited from 4 hospital-based EMS agencies in an urban area in the east coast region of the United States. The interview questions covered EMS workflow, challenges encountered, technology needs, and users’ perceptions of smart glasses in supporting daily EMS work. During the interviews, we demonstrated a system prototype to elicit more accurate and comprehensive insights regarding smart glasses. Interviews were transcribed verbatim and analyzed using the open coding technique. Results We identified four potential application areas for smart glasses in EMS: enhancing teleconsultation between distributed prehospital and hospital providers, semiautomating patient data collection and documentation in real time, supporting decision-making and situation awareness, and augmenting quality assurance and training. Compared with the built-in touch pad, voice commands and hand gestures were indicated as the most preferred and suitable interaction mechanisms. EMS providers expressed positive attitudes toward using smart glasses during prehospital encounters. However, several potential barriers and user concerns need to be considered and addressed before implementing and deploying smart glasses in EMS practice. They are related to hardware limitations, human factors, reliability, workflow, interoperability, and privacy. Conclusions Smart glasses can be a suitable technological means for supporting EMS work. We conclude this paper by discussing several design considerations for realizing the full potential of this hands-free technology. 
    more » « less
  3. In this project, the following products were produced as a result of this project: Smart Manufacturing training workshops Online Educational modules on Smart Manufacturing Industrial speaker short talks that present the State-of-the-art Industrial Applications Peer-reviewed articles were produced. High school and Middle School visits In the hands-on training, we demonstrated the use of code-programmed drones in technical education and Smart Manufacturing (SM). Unmanned aerial and ground vehicle technologies are increasingly finding applications in industrial settings. Training on SM is achieved by using coded drones, with educational modules and a database of technologies and their applications. 
    more » « less
  4. Augmented Reality (AR) enables elements of a computer-generated digital world to be integrated with a user’s perception of the physical world. Smart glasses, like smart phones, have independent operating systems and they can support a variety of different applications and modes of communication to support augmented reality. This paper details the development of a novel new application that extends a widely-used mobile app for phenotyping and allows agronomists to interact with the app while keeping their hands free to perform field work. The smart glasses accept voice commands from the user and communicate with the mobile phone app via Bluetooth. In addition, changes detected by the mobile phone are displayed to the user on the smart glasses. This enables agronomists to efficiently collect phenotypic data. 
    more » « less
  5. null (Ed.)
    User experience (UX) professionals' attempts to address social values as a part of their work practice can overlap with tactics to contest, resist, or change the companies they work for. This paper studies tactics that take place in this overlap, where UX professionals try to re-shape the values embodied and promoted by their companies, in addition to the values embodied and promoted in the technical systems and products that their companies produce. Through interviews with UX professionals working at large U.S.-based technology companies and observations at UX meetup events, this paper identifies tactics used towards three goals: (1) creating space for UX expertise to address values; (2) making values visible and relevant to other organizational stakeholders; and (3) changing organizational processes and orientations towards values. This paper analyzes these as tactics of resistance: UX professionals seek to subvert or change existing practices and organizational structures towards more values-conscious ends. Yet, these tactics of resistance often rely on the dominant discourses and logics of the technology industry. The paper characterizes these as partial or "soft" tactics, but also argues that they nevertheless hold possibilities for enacting values-oriented changes. 
    more » « less