skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cretaceous pollen cone with three‐dimensional preservation sheds light on the morphological evolution of cycads in deep time
Summary The Cycadales are an ancient and charismatic group of seed plants. However, their morphological evolution in deep time is poorly understood. While molecular divergence time analyses estimate a Cretaceous origin for most major living cycad clades, much of the extant diversity is inferred to be a result of Neogene diversifications. This leads to long branches throughout the cycadalean phylogeny that, with few exceptions, have yet to be rectified by unequivocal fossil cycads. We report a permineralized pollen cone from the Campanian Holz Shale located in Silverado Canyon, CA, USA ( c. 80 million yr ago). This fossil was studied via serial sectioning, SEM, 3D reconstruction and phylogenetic analyses. Microsporophyll and pollen morphology indicate this cone is assignable to Skyttegaardia , a recently described genus based on disarticulated lignitized microsporophylls from the Early Cretaceous of Denmark. Data from this new species, including a simple cone architecture, anatomical details and vasculature organization, indicate cycadalean affinities for Skyttegaardia . Phylogenetic analyses support this assignment and recover Skyttegaardia as crown‐group Cycadales, nested within Zamiaceae. Our findings support a Cretaceous diversification for crown‐group Zamiaceae, which included the evolution of morphological divergent extinct taxa with unique traits that have yet to be widely identified in the fossil record.  more » « less
Award ID(s):
1953993
PAR ID:
10463064
Author(s) / Creator(s):
;
Date Published:
Journal Name:
New Phytologist
Volume:
238
Issue:
4
ISSN:
0028-646X
Page Range / eLocation ID:
1695 to 1710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yoshizawa, Kazunori (Ed.)
    Abstract Recently discovered amber-preserved fossil Cicadellidae exhibit combinations of morphological traits not observed in the modern fauna and have the potential to shed new light on the evolution of this highly diverse family. To place the fossils explicitly within a phylogenetic context, representatives of five extinct genera from Cretaceous Myanmar amber, and one from Eocene Baltic amber were incorporated into a matrix comprising 229 discrete morphological characters and representatives of all modern subfamilies. Phylogenetic analyses yielded well resolved and largely congruent estimates that support the monophyly of most previously recognized cicadellid subfamilies and indicate that the treehoppers are derived from a lineage of Cicadellidae. Instability in the morphology-based phylogenies is mainly confined to deep internal splits that received low branch support in one or more analyses and also were not consistently resolved by recent phylogenomic analyses. Placement of fossil taxa is mostly stable across analyses. Three new Cretaceous leafhopper genera, Burmotettix gen. nov., Kachinella gen nov., and Viraktamathus gen. nov., consistently form a monophyletic group distinct from extant leafhopper subfamilies and are placed in Burmotettiginae subfam. nov. Extinct Cretaceous fossils previously placed in Ledrinae and Signoretiinae are recovered as sister to modern representatives of these groups. Eomegophthalmus Dietrich and Gonçalves from Baltic amber consistently groups with a lineage comprising treehoppers, Megophthalminae, Ulopinae, and Eurymelinae but its position is unstable. Overall, the morphology-based phylogenetic estimates agree with recent phylogenies based on molecular data alone suggesting that morphological traits recently used to diagnose subfamilies are generally informative of phylogenetic relationships within this group. 
    more » « less
  2. Abstract Tardigrades are a diverse phylum of microscopic invertebrates widely known for their extreme survival capabilities. Molecular clocks suggest that tardigrades diverged from other panarthropods before the Cambrian, but their fossil record is extremely sparse. Only the fossil tardigradesMilnesium swolenskyi(Late Cretaceous) andParadoryphoribius chronocaribbeus(Miocene) have resolved taxonomic positions, restricting the availability of calibration points for estimating for the origin of this phylum. Here, we revise two crown-group tardigrades from Canadian Cretaceous-aged amber using confocal fluorescence microscopy, revealing critical morphological characters that resolve their taxonomic positions. Formal morphological redescription ofBeorn leggireveals that it featuresHypsibius-type claws. We also describeAerobius dactylusgen. et sp. nov. based on its unique combination of claw characters. Phylogenetic analyses indicate thatBeo. leggiandAer. dactylusbelong to the eutardigrade superfamily Hypsibioidea, adding a critical fossil calibration point to investigate tardigrade origins. Our molecular clock estimates suggest an early Paleozoic diversification of crown-group Tardigrada and highlight the importance ofBeo. leggias a calibration point that directly impacts estimates of shallow nodes. Our results suggest that independent terrestrialization of eutardigrades and heterotardigrades occurred around the end-Carboniferous and Lower Jurassic, respectively. These estimates also provide minimum ages for convergent acquisition of cryptobiosis. 
    more » « less
  3. Characterization and phylogenetic integration of fossil angiosperms with uncertain affinities is relatively limited, which may obscure the diversity of extinct higher taxa in the flowering plant tree of life. The order Cornales contains a diversity of extinct taxa with uncertain familial affinities that make it an ideal group for studying turnover in angiosperms. Here, we describe a new extinct genus of Cornales unassignable to an extant family and conduct a series of phylogenetic analyses to reconstruct relationships of fossils across the order. Two permineralized endocarps were collected from the Cedar District Formation (Campanian, 82–80 Ma) of Sucia Island, State of Washington, United States. Fossils were sectioned with the cellulose acetate peel technique and incorporated into a morphological dataset. To assess the utility of this dataset to accurately place taxa in their respective clades, we used a series of phylogenetic pseudofossilization analyses. We then conducted a total‐evidence analysis and a scaffold‐based approach to determine relationships of fossils. Based on their unique combination of characters, the fossils represent a new genus, Fenestracarpa washingtonensis gen. nov. et sp. nov. Pseudofossilization analyses indicate that our morphological dataset can be used to accurately recover taxa at the major clade to family level, generally with moderate to high support. The total‐evidence and scaffold‐based analyses recoveredFenestracarpaand other fossil genera in an entirely extinct clade within Cornales. Our findings increase the reported diversity of extinct Cornales and indicate that the order's initial radiation likely included the divergence of an extinct higher clade that endured the end‐Cretaceous Mass extinction but perished during the Cenozoic. 
    more » « less
  4. The Cretaceous period is the time of the first appearance of the diatoms in the fossil record. These fossils give us direct evidence of the age and early evolution of the diatom lineage. The fossil record, however, is incomplete and therefore often extrapolated through time‐calibrated phylogenies. These two approaches offer different perspectives on the early evolution of diatoms, which is still poorly understood. We compiled the first comprehensive Cretaceous Diatom Database, a tool to investigate the taxonomy, diversity, and occurrence of the earliest known diatom lineages. To further aid the integration and use of the oldest diatom fossils in molecular clock analyses, we present a set of well‐documented Cretaceous fossils that can be placed onto molecular phylogenetic trees of extant and extinct species, making them ideal candidates for the calibration of molecular clocks. The analysis of the fossil record and the Cretaceous Diatom Database revealed Cretaceous diversity is substantially greater than previously thought, yet considerable taxonomic work is still needed. The Cretaceous Diatom Database and the list of Cretaceous fossils for calibrating molecular clocks represent valuable resources for future evolutionary and taxonomic studies of modern and fossil diatoms. 
    more » « less
  5. Pleurodonta is an ancient, diverse clade of iguanian lizard distributed primarily in the Western Hemisphere. Although the clade is a frequent subject of systematic research, phylogenetic resolution among the major pleurodontan clades is elusive. That uncertainty has complicated the interpretations of many fossil pleurodontans. I describe a fossil skull of a pleurodontan lizard from the Palaeogene of Wyoming that was previously allocated to the puzzling taxonAciprion formosum, and provide an updated morphological matrix for iguanian lizards. Phylogenetic analyses using Bayesian inference demonstrate that the fossil skull is the oldest and first definitive stem member of Crotaphytidae (collared and leopard lizards), establishing the presence of that clade in North America during the Palaeogene. I also discuss new or revised hypotheses for the relationships of several early pleurodontans. In particular, I examine potential evidence for crown-Pleurodonta in the Cretaceous of Mongolia (Polrussia), stem Pleurodonta in the Cretaceous of North America (Magnuviator) and a stem anole in the Eocene of North America (Afairiguana). I suggest that the placement of the fossil crotaphytid is stable to the uncertain phylogeny of Pleurodonta, but recognize the dynamic nature of fossil diagnosis and the potential for updated systematic hypotheses for the other fossils analysed here. 
    more » « less