Methods that can simultaneously install multiple different functional groups to heteroarenes via C−H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di‐carbo‐functionalization of indoles in a site‐ and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)‐mediated C3‐metalation and specifically promoted by the C1‐substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2‐arylated C3‐alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1‐substituted NBE in accelerating the turnover‐limiting oxidative addition step.
Methods that can simultaneously install multiple different functional groups to heteroarenes via C−H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di‐carbo‐functionalization of indoles in a site‐ and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)‐mediated C3‐metalation and specifically promoted by the C1‐substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2‐arylated C3‐alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1‐substituted NBE in accelerating the turnover‐limiting oxidative addition step.
more » « less- PAR ID:
- 10463097
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 135
- Issue:
- 43
- ISSN:
- 0044-8249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Pd-catalyzed C–H arylation of heteorarenes is an important and widely studied synthetic transformation; however, the regioselectivity is often substrate-controlled. Here, we report catalyst-controlled regioselectivity in the Pd-catalyzed oxidative coupling of N-(phenylsulfonyl)indoles and aryl boronic acids using O2 as the oxidant. Both C2- and C3-arylated indoles are obtained in good yield with >10:1 selectivity. A switch from C2 to C3 regioselectivity is achieved by including 4,5-diazafluoren-9-one or 2,2'-bipyrimidine as an ancillary ligand to a "ligand-free" Pd(OTs)2 catalyst system. Density functional theory calculations indicate that the switch in selectivity arises from a change in the mechanism, from a C2-selective oxidative-Heck pathway to a C3-selective C–H activation/reductive elimination pathway.more » « less
-
Abstract Functionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal‐catalyzed carbene transfer has provided an attractive route to afford C3‐functionalized indoles, these protocols are viable only in the presence of N‐protected indoles, owing to competition from the more facile N−H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C−H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α‐diazoacetate to give the corresponding C3‐functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti‐inflammatory drug indomethacin.
-
Abstract Functionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal‐catalyzed carbene transfer has provided an attractive route to afford C3‐functionalized indoles, these protocols are viable only in the presence of N‐protected indoles, owing to competition from the more facile N−H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C−H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α‐diazoacetate to give the corresponding C3‐functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti‐inflammatory drug indomethacin.
-
Abstract Carbazole alkaloids hold great potential in pharmaceutical and material sciences. However, the current approaches for C1 functionalization of carbazoles rely on the use of a pre‐installed directing group, severely limiting their applicability and hindering their overall efficiency. Herein, we report for the first time the development of direct Pd‐catalyzed C−H alkylation and acylation of carbazoles assisted by norbornene (NBE) as a transient directing mediator. Notably, the involvement of a six‐membered palladacycle intermediate was suggested in this case, representing the first example of such intermediacy within the extensively studied Pd/norbornene reactions realm.