skip to main content


This content will become publicly available on September 15, 2024

Title: Copper‐Catalyzed Asymmetric Acylboration of 1,3‐Butadienylboronate with Acyl Fluorides
Abstract

We report herein a Cu‐catalyzed regio‐, diastereo‐ and enantioselective acylboration of 1,3‐butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)‐β,γ‐unsaturated ketones bearing an α‐tertiary stereocenter with highZ‐selectivity and excellent enantioselectivities. While direct access to highly enantioenrichedE‐isomers was not successful, we showed that such molecules can be synthesized with excellentE‐selectivity and optical purities via Pd‐catalyzed alkene isomerization from the correspondingZ‐isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.

 
more » « less
NSF-PAR ID:
10463121
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
135
Issue:
43
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report herein a Cu‐catalyzed regio‐, diastereo‐ and enantioselective acylboration of 1,3‐butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)‐β,γ‐unsaturated ketones bearing an α‐tertiary stereocenter with highZ‐selectivity and excellent enantioselectivities. While direct access to highly enantioenrichedE‐isomers was not successful, we showed that such molecules can be synthesized with excellentE‐selectivity and optical purities via Pd‐catalyzed alkene isomerization from the correspondingZ‐isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.

     
    more » « less
  2. Abstract

    We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α‐CH2Bpin‐substituted crotylboronate. Chiral phosphoric acid (S)‐A‐catalyzed asymmetric allyl addition with the reagent gaveZanti‐homoallylic alcohols with excellent enantioselectivities andZ‐selectivities. When the enantiomeric acid catalyst (R)‐Awas utilized, the stereoselectivity was completely reversed andEanti‐homoallylic alcohols were obtained with highE‐selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.

     
    more » « less
  3. Abstract

    We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α‐CH2Bpin‐substituted crotylboronate. Chiral phosphoric acid (S)‐A‐catalyzed asymmetric allyl addition with the reagent gaveZanti‐homoallylic alcohols with excellent enantioselectivities andZ‐selectivities. When the enantiomeric acid catalyst (R)‐Awas utilized, the stereoselectivity was completely reversed andEanti‐homoallylic alcohols were obtained with highE‐selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.

     
    more » « less
  4. Abstract

    We report a chemoselective, phosphine‐catalyzed semireduction of primary and secondary propiolamides. In the presence of stoichiometric pinacolborane and catalyticn‐tributylphosphine, a variety of propiolamides were successfully converted to the corresponding acrylamides in excellent yield with (E)‐stereoselectivity. The reaction condition is tolerant of various functional groups including alkene, alkyne, ketone, or ester. Deuterium labeling studies established that the hydride from activated pinacolborane is added to the α‐carbon and the proton on the amide nitrogen is abstracted by the ß‐carbon to furnish the (E)‐acrylamides. DFT calculations revealed a clear energetic driving force for the (E)‐ over the (Z)‐isomer.

    magnified image

     
    more » « less
  5. Abstract

    We report a transition metal‐free, regio‐ and stereo‐selective, phosphine‐catalyzed method for thetranshydroboration of 1,3‐diynes with pinacolborane that affords (E)‐1‐boryl‐1,3‐enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3‐diyne framework as unambiguously established by NMR and X‐ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.

     
    more » « less