skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Are there metacognitive benefits of learner‐ and instructor‐generated visualizations?
Abstract This study explored how different formats of instructional visuals affect the accuracy of students' metacognitive judgments. Undergraduates (n = 133) studied a series of five biology texts and made judgments of learning. Students were assigned randomly to study the texts only (text only), study the texts with provided visuals (provided visuals group), study the texts and generate their own visuals (learner‐generated visuals group), or study the texts and observe animations of instructor‐generated visuals (instructor‐generated visuals group). After studying the texts and making judgments of learning, all students completed multiple‐choice comprehension tests on each text. The learner‐generated and instructor‐generated visuals groups exhibited significantly higher relative judgment accuracy than the text only and provided visuals groups, though this effect was relatively small. The learner‐generated visuals group also required more study time and was more likely to report the use of visual cues when making their judgments of learning.  more » « less
Award ID(s):
1955348 1956466 2307285
PAR ID:
10463263
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applied Cognitive Psychology
Volume:
37
Issue:
6
ISSN:
0888-4080
Format(s):
Medium: X Size: p. 1430-1443
Size(s):
p. 1430-1443
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Prior research suggests most students do not glean valid cues from provided visuals, resulting in reduced metacomprehension accuracy. Across 4 experiments, we explored how the presence of instructional visuals affects students’ metacomprehension accuracy and cue-use for different types of metacognitive judgments. Undergraduates read texts on biology (Study 1a and b) or chemistry (Study 2 and 3) topics, made various judgments (test, explain, and draw) for each text, and completed comprehension tests. Students were randomly assigned to receive only texts (text-only condition) or texts with instructional visualizations (text-and-image condition). In Studies 1b, 2 and 3, students also reported the cues they used to make each judgment. Across the set of studies, instructional visualizations harmed relative metacomprehension accuracy. In Studies 1a and 2, this was especially the case when students were asked to judge how well they felt they could draw the processes described in the text. But in Study 3, this was especially the case when students were asked to judge how well they would do on a set of comprehension tests. In Studies 2 and 3, students who reported basing their judgments on representation-based cues demonstrated more accurate relative accuracy than students who reported using heuristic based cues. Further, across these studies, students reported using visual cues to make their draw judgments, but not their test or explain judgments. Taken together, these results indicate that instructional visualizations can hinder metacognitive judgment accuracy, particularly by influencing the types of cues students use to make judgments of their ability to draw key concepts. 
    more » « less
  2. Abstract Undergraduates (n = 132) learned about the human respiratory system and then taught what they learned by explaining aloud on video. Following a 2 × 2 design, students either generated their own words or visuals on paper while explaining aloud, or they viewed instructor‐provided words or visuals while explaining aloud. One week after teaching, students completed explanation, drawing, and transfer tests. Teaching with provided or generated visualizations resulted in significantly higher transfer test performance than teaching with provided or generated words. Furthermore, teaching with provided visuals led to significantly higher drawing test performance than teaching with generated visuals. Finally, the number of elaborations in students' explanations during teaching did not significantly differ across groups but was significantly associated with subsequent explanation and transfer test performance. Overall, the findings partially support the hypothesis that visuals facilitate learning by explaining, yet the benefits appeared stronger for instructor‐provided visuals than learner‐generated drawings. 
    more » « less
  3. The purpose of the current study was to analyze the impact of delayed monitoring judgments on both monitoring accuracy and science knowledge in a game-based learning environment called MISSING MONTY. Fifth-grade students from public schools in the USA were randomly assigned to either an immediate monitoring (IM) (n = 142) condition or to a delayed monitoring (DM) condition (n = 171). All students completed a pre and posttest of science knowledge and made item-level confidence judgments on each test. The students then played MISSING MONTY for approximately 2-5 weeks depending upon class schedule. During gameplay students visited various animal researchers, read informational texts, and completed knowledge and monitoring challenges. In the IM condition, students rated their confidence on a 100-point scale immediately following each item. In the DM condition, the students first completed the knowledge challenge and then provided monitoring judgments following the completion of all items. Results showed significant improvements for science knowledge and monitoring accuracy for both groups, however no significant differences were found between the two conditions Thus, MISSING MONTY appeared to have positive effects on both resultant science knowledge and monitoring accuracy regardless of when monitoring was assessed. Implications for the design of learning environments and SRL will be discussed. 
    more » « less
  4. This study explored why students rarely create drawings when learning from science texts despite potential learning benefits. Undergraduates (n = 114) studied a 10-part text on the human respiratory system and took notes by choosing their own strategies (free choice group) or by choosing to create a drawing or write a verbal summary (forced choice group). Other students were instructed to create drawings (draw group) or write summaries (summarize group). All students then completed a series of post-tests. The forced choice group chose to draw significantly more frequently than the free choice group; however, both groups still overwhelmingly chose summarizing. Participants across all groups reported lower prior experience, lower expectancies for success, lower perceived value, and higher perceived cost of drawing compared to summarizing. Students’ prior experiences and beliefs about drawing were also associated with how frequently they chose to draw, providing implications for future instructional interventions. 
    more » « less
  5. Abstract How do learners make sense of what they are learning? In this article, I present a new framework of sense-making based on research investigating the benefits and boundaries of generative learning activities (GLAs). The generative sense-making framework distinguishes among three primary sense-making modes—explaining, visualizing, and enacting—that each serve unique and complementary cognitive functions. Specifically, the framework assumes learners mentally organize and simulate the learning material (via the visualizing and enacting modes) to facilitate their ability to generalize the learning material (via the explaining mode). I present evidence from research on GLAs illustrating how visualizations and enactments (instructor-provided and/or learner-generated) can facilitate higher quality learner explanations and subsequent learning outcomes. I also discuss several barriers to sense-making that help explain when GLAs are not effective and describe possible ways to overcome these barriers by appropriately guiding and timing GLAs. Finally, I discuss implications of the generative sense-making framework for theory and practice and provide recommendations for future research. 
    more » « less